PatrIoT: Policy Assisted Resilient
Programmable IoT System

Moosa Yahyazadeh!, Syed Rafiul Hussain?, Endadul Hoque?, and
Omar Chowdhury!

! The University of Towa, Iowa City, IA 52242, USA
{moosa-yahyazadeh, omar-chowdhury }@uiowa. edu
2 The Pennsylvania State University, University Park, PA 16802, USA
hussainl@psu.edu
3 Syracuse University, Syracuse, NY 13244, USA
enhoque@syr. edu

Abstract. This paper presents PATRIoT, which efficiently monitors the
behavior of a programmable IoT system at runtime and suppresses con-
templated actions that violate a given declarative policy. Policies in
PATRIOT are specified in effectively propositional, past metric tempo-
ral logic and capture the system’s expected temporal invariants whose
violation can break its desired security, privacy, and safety guarantees.
PATRIOT has been instantiated for not only an industrial IoT system
(EVA ICS) but also for two home representative automation platforms:
one proprietary (SmartThings) and another open-source (OpenHAB).
Our empirical evaluation shows that, while imposing only a moderate
runtime overhead, PATRIoT can effectively detect policy violations.

Keywords: Runtime monitoring - IoT systems - Policy enforcement.

1 Introduction

Programmable IoT systems, that have seen deployments in regular households
as well as advanced manufacturing plants, enable one to carry out specialized
automation functions by instructing a group of (COTS) actuators to perform
different tasks based on sensor values, events, and business logic. For supporting
diverse automation tasks, these systems allow one to develop and deploy au-
tomation apps/units whose complexity can range from simple if-then-else rules
to complex machine learning based programs. As a simple example, an IoT app
in a metal melting plant can command a lifter-robot (i.e., actuator) to load scrap
metal on a conveyor belt only when the weight sensor reads more than 100 lbs.

These automation apps that (i) can be possibly obtained from unvetted
sources, (ii) can be malicious, (i7i) may have logical bugs, or (iv) may interact
in unanticipated ways with other apps, can render the system to unexpected
states. Such unexpected state transitions can halt a production line, create
safety-hazards, or violate security and privacy guarantees of such systems. For
instance, an IoT app in a melting plant can instruct the lifter-robot to load scrap

2 F. Author et al.

metal on an already loaded conveyor belt, severely damaging it and creating a
safety hazard. This paper focuses on developing a runtime policy enforcement
approach for ensuring that a system under monitoring does not reach such un-
expected states.

A majority of the existing work relies on static analysis of apps to identify
such undesired behavior [39124371730120] but suffers from one of the following
limitations: (i) false positives due to conservative analysis; (ii) false negatives
due to single app analysis; or (#i7) scalability issues due to state-space explosion.
Existing runtime enforcement based approaches [I8/41128], on the contrary, have
one of the following limitations: (i) requires constructing the whole state-space
of the global IoT system statically which is infeasible for large systems; (ii)
cannot enforce rich temporal policies; (%ii) policy specification is based on the
transitions on the global state-space which is extremely inconvenient.

In this paper, we present PATRIoT which monitors the contemplated actions
of programmable IoT apps at runtime and denies them only when they vio-
late a declarative policy. The policy language of PATRIoT can refer to any past
events/actions/system states, impose explicit-time constraints between any past
events/states, and contain predicates over quantitative aspects of the system
execution (e.g., number of times an event has occurred in the last 10 seconds).
Technically, this language can be automatically translated to a first-order, past-
time metric temporal logic (MTL) with some aggregation functions (e.g., count,
mean). The first-order logic portion of it, modulo aggregation functions, is re-
stricted to a fragment of the BernaysSchonfinkel class (or, effectively proposi-
tion logic or EPR). This conscious choice allows us not only to express a rich
set of policies but also to enforce our policies efficiently by drawing inspirations
from existing runtime monitoring algorithms [T2JT3IT4I3536/15]. Unlike first-
order MTL, for enforcing our policies, it is sufficient to store only truth values of
sub-formulas with auxiliary structures of the immediate previous state instead
of any past variable substitutions.

To show PATRIoT’s generality, we instantiated it for 3 representative IoT
systems, namely, EVA ICS [4] in the context of Industrial IoT systems, and also
Samsung SmartThings [7] and OpenHAB [5], in the context of home automation.
For instantiating PATRI0OT, we resort to inline reference monitoring in which we
automatically instrument each app by guarding high-level APIs for performing
actions with a call to the policy decision function. We develop automatic instru-
mentation approach for each of the platforms. In addition, as automation apps
can run concurrently, one has to also use appropriate synchronization mech-
anisms (e.g., mutex) to avoid any inconsistencies during state update of the
reference monitor. We needed to design such a synchronization mechanism for
SmartThings (e.g., mutex) as its programming interface did not provide any.

In an empirical evaluation with two case studies, one based on metal melting
plant and another based on home automation, we observed that PATRIoT was
able to mitigate all the undesired state transitions while incurring an average
of 137 milliseconds of runtime overhead. We have also designed PATRI0OT as a
standalone library which other platforms can use to perform policy checking.

PATRIOT: Policy Assisted Resilient Programmable IoT System 3

To summarize, the paper has the following technical contributions:

— We propose PATRIoOT, which monitors the execution of an IoT system at
runtime and prevents it from entering an undesired state by denying actions
that violate a policy.

— We instantiate PATRIOT for three representative programmable IoT platforms,
namely, EVA ICS [], SmartThings [7], and OpenHAB [5]. Our evaluation
with these instantiations show that they are not only effective in identifying
non-compliant actions but also efficient in terms of runtime overhead.

2 Scope and Motivation

Most of the IoT ecosystems, despite being complex, share a similar architec-
ture. Figure [I] shows a general IoT system consisting of a wide range of devices
(e.g., robot arm, surveillance cameras, smart lights) and a programmable IoT
platform, which serves as a centralized backend of the system. The backend typ-
ically exposes some programming interfaces for IoT apps (or a system control
panel) to automate the system (or directly control the devices, respectively).
The backend is a (logically) centralized server, dedicated for storage and
computation, is responsible to synchronize the physical world with the cyber
world. It can be physically co-located or placed in a remote cloud. Nevertheless,
it provides a human machine interface to enable remote control and monitoring.
Nowadays, most IoT platforms expose programming interfaces for programmers
to develop flexible and customized IoT apps. The app execution engine coordi-
nates the execution of all IoT apps in which the automated operations of the IoT
system occur as they directly guide (and possibly, alter) the physical processes.
All actions taking place in an IoT system form its behavior. The actions in
IoT apps are based on the automation tasks in that system. Given an IoT app’s
business logic, commanding an action might not only depend on the devices’
events for which the IoT app (issuing the action) is registered but also hinge on
the current context in the system. The current context for an action is formed
by the snapshot of the system state right before taking the action. As the com-
plexity of an IoT system (including its automation tasks) scales and grows, the
dependency between actions and the system state becomes more tangled. Hence,
to capture the expected behavior, this complexity of the dependency between
action and the system state needs to be taken into account.
Policy. The expected behavior of an IoT system can be captured via a set of
expressions, called policies. All policies must be invariably maintained by the
system at runtime while the IoT apps are active and operating. A policy is
maintained if it is satisfied by an impending action of any IoT app given the
current execution trace. Thus, if an action respects every policy, then the system
is considered to comply with the policies and allows the action to be executed. In
case of a violation, an action must be denied to prevent potential repercussions.
Threats. Any unwanted behavior, caused by single IoT app or unintended in-
terplays among multiple IoT apps, can impose security, privacy, or safety threats
to the IoT system. The security threats exist if an unwanted action impairs an

4 F. Author et al.

Programmable IoT Platform -
Status from a

App @7““0" Abstract sensor loT Devices
: . Action :
EXGFUUOH @7 PatrloT Device Action for 5@3 L'EET @ @
Engine Action API o
g /| anactuator "\

J

Fig.1. A programmable IoT platform with PATRIoT installed. Without PATRIoT,
every Action would be directly forwarded to the device API.

IoT system by changing its state such that it cannot perform its intended func-
tions (i.e., targeting system integrity) or gives an unauthorized access to the
protected data (i.e., violating data confidentiality). Depending on the criticality
level of the IoT apps, such unwanted actions can also threaten the safety of the
system (e.g., failing to turn on the fire sprinkler of the factory floor when there
is a fire). Not to mention that allowing some of those action can also violate
the privacy (e.g., posting a tweet by a medicine-reminder app unbeknown to the
user). An IoT system can face such threat due to a number of vulnerabilities
including cross-app interference, race conditions due to concurrent executions of
apps, a lack of fine-grained access control mechanisms in the underlying plat-
forms, and semantic bugs in apps. As an example, let us let us consider cross-app
interference vulnerabilities specialized for programmable IoT systems.

Since ToT app’s action can change a device state and/or a physical processes
(i.e., the environment), it can generate additional trigger(s) which in turn can
execute another IoT app. Such interplay among IoT apps can be either explicit
or implicit [20]. In an explicit interplay, the outcome of an action directly trig-
gers other IoT app. For instance, running “if the weight sensor detects some
weights then turn on the conveyor belt” explicitly triggers “if the conveyor belt
is rolling then turn on the object detector”. Contrarily, in an implicit interplay,
the outcome of an action changes some attributes of the physical environment
which can consequently trigger other IoT app. For example, “if water tempera-
ture is greater than 200 °F then open the outgoing valve of the cooler to drain
hot water” implicitly triggers “if water level is low then open the incoming valve
to refill the cooler with cold water”.

Attacker Model. In this paper, we assume an attacker is capable of launching
the unwanted behavior by (i) developing the malicious IoT apps exploiting the
above vulnerabilities or (i) simply misusing the existing faulty IoT apps, where
the latter does not necessarily need to involve the attacker, yet is unwittingly
introduced by a developer. For smart home based systems, a malicious app can
creep in to the system through wnvetted marketplaces from which users often
obtain IoT apps. Contrarily, IoT systems like IIoT may not have open market-
places, but they are prone to — (i) insiders who can carry and install malicious
apps, and (ii) untrusted third-party developers. Any undesired situation resulted
from compromised IoT devices, by exploiting vulnerabilities in firmware or com-
munication protocols, and even the IoT backend itself is beyond our scope.

Motivating example. Consider a smart building where access restrictions are
imposed on the entry of several rooms. An IoT integrated reader installed near

PATRIOT: Policy Assisted Resilient Programmable IoT System 5

the entry unlocks the door when a presented credential (e.g., smart card) is au-
thenticated. This one-way security entrance operation is one of the most popular
and simplest access control solutions for smart buildings in which once someone
is authorized entering a room, then they can easily exit the room because the
door is unlocked from inside. In this situation, an unwanted behavior could occur
when an unauthorized person sneaks into the room through a window or venti-
lation pipe and then they can freely open the door and enter into the building. A
security measure preventing this undesirable situation is to check the following
temporal policy before unlocking the door from inside:

Allow unlatching the door lock

only if the number of granted door access requests is

greater than the number of times door unlatched.
That is, unlatching the door from inside is allowed whenever someone entered
into the room before.

3 Overview of PATRIOT

In this section, we present an abstract programmable IoT system model, our
problem definition, and PATRIoT’s architecture.

3.1 Abstract Model

A programmable IoT system Z is viewed as a labeled transition system defined
by the tuple (S, A,P,V,T), where S is a non-empty, finite set of states, A is a
finite set of high-level activities in the IoT system, P refers to a finite set of all
possible IoT apps supported by the underlying platform, V refers to a finite but
arbitrary set of typed variables, and T is the transition relation T C S x A x S
regulates how Z changes its states while reacting to the activities. A state is
total map that assigns each variable v € V a value from an appropriate domain.

We consider T to be a deterministic and left-total relation (i.e., no dead
states). For all states sp,s. € S and activity a € A, if (sp,a,s.) € T (alter-
natively, s, — Se), then it suggests that when the system is in state s; and
an activity a is performed, then Z will move to the state s.. Given a state
sp € S such that sp = [Uyalver + close,...] and an activity a = (caused by —
appi, target__device — valvel, activity _value — open) by an app (called app; €

P), then T will transition to a state s, where se = [vy,1ye1 = OPeN, .. .].

3.2 Problem Definition

Given a programmable IoT system Z, let o be a finite execution trace of it. A
trace o is a finite sequence of states o = (sg, $1,52,...,5n—1). We use |o| to
denote the length of the trace o. For each trace o, we require that there exists
an activity a € A such that s; = s;,.1 € T where 0 < i < |o| — 1. Given
7 and a policy ¥, in this paper, we want to ensure that each action activity
performed by an app € P is compliant with ¥, formalized as below. Given a
programmable IoT system Z, a policy ¥, a valid trace o = (sg, $1,...,Sn—1) of
Z, and an action activity a., the policy compliance problem is to decide whether
0’ =(50,81,..,80_1,5,) is compliant with ¥ where s,,_; %% s,, € T.

6 F. Author et al.

3.3 Architecture of PATRIOT

PATRIOT’s reference monitor has the following three main components: Policy
Enforcement Point (PEP), Policy Decision Point (PDP), and Policy Informa-
tion Point (PIP). The PEP intercepts each action contemplated by apps installed
in a programmable IoT system. It then consults the PDP to decide whether the
action is compliant with the given policies. If the action is compliant, it is al-
lowed to be carried out; otherwise, the action is denied. The PDP implements
the policy decision function which takes as input an action, and returns ALLOW
or DENY. It essentially solves the policy compliance problem. The PIP stores
all the relevant information regarding the policy (e.g., policy statements) and
system information (e.g., device status) that are necessary for policy decision.

4 Design of PatrloT

In this section, we present the syntax and semantics of PATRIoT’s policy lan-
guage as well as PATRIoT’s solution to policy compliance problem.

4.1 Policy Language Syntax

Note that, in what follows, we discuss the abstract syntax of our language. A
policy consists of one or more policy blocks. Each policy block starts with a
Policy keyword followed by an identifier. The body of each block can have one
or more policy statements of the following form. Policy blocks are introduced to
allow modularity; grouping similar policy statements under a named block.

allow/deny <target clause>
[only if <condition clause>]
[except <condition clause>]

In a policy statement, we can use either allow or deny keyword to identify
allow or deny statements, respectively. The allow (or, deny) statements capture
the conditions under which certain actions are permitted (or, discarded, respec-
tively). The <target_clause> is an expression that captures information about
the actions for which the policy statement is applicable. It has the form of a non-
temporal condition (i.e., ¥) shown below. We allow a special wildcard keyword,
everything, in place of <target clause>, to denote all possible actions. The op-
tional only if portion contains a <condition clause> that expresses a logical
condition under which the action, identified by the <target clause>, will be al-
lowed (or, denied). The optional except portion contains a <condition_clause>
that captures the exceptional cases under which the restriction expressed by the
<condition_ clause> in only if portion can be disregarded.

(Term)t ==wv | c| f(P)
(Non-temporal Condition)¥ ::= true | false | P(¢1,¢2) | not¥; | ¥jor ¥, | ¥1and ¥
(Temporal Condition)® ::= ¥ | Since . (P1, P2) | Lastlyj,,)(P1) | Oncepe,,1(P1) |
not @, | P1or Py | P1and Py
({condition_ clause)) ::= @|¥

PATRIOT: Policy Assisted Resilient Programmable IoT System 7

A condition clause can be either be a temporal condition or a non-temporal
condition. A non-temporal formula (i.e., ¥) can be true, false, a predicate or
their logical combinations. We use and, or, and not to denote the logical conjunc-
tion, disjunction, and negation, respectively. We only consider binary predicates
P where one of its arguments is a constant. A term is either a variable v, a con-
stant ¢, or an aggregation function f. Currently, we have the following standard
predicates: >, >, =, #, <, <. Examples of predicates could be Temperature > 78
and Humidity < 30. We currently allow the Count aggregation function.

The condition clause can use three standard past temporal operators
Sincefy (-,), Lastlyy,,;(-), and Oncey (). To enable condition clause to refer
to explicit time differences between different state values, each of the temporal
operators can optionally take an additional time interval [¢, r], where ¢ and r
denote the lowerbound and upperbound such that ¢,7 € RT U {0,00} and £ < r.
If £ is 0, it points to the current state. r can be co to allow temporal operators
to refer to arbitrarily in the past. Using ¢ and r, we can adjust a time window
on which a temporal operator can be applied.

Examples. Having understood the basics of policy language syntax, we can
formally specify the policy given in motivating example [2] as follows:

POLICY Motivating_Example_1:
ALLOW action_command = unlatch and action_device = door
ONLY IF COUNT(ONCE(state(door_reader) = access_granted)) >
COUNT (ONCE(state(door) = unlatched))

4.2 Policy Language Semantics

We provide the semantics of policy language by converting any given policy to
a quantifier-free, first-order metric temporal logic (QF-MTL) formula.

A policy ¥ consists of a sequence of policy statements (psy,psa,...,psn).
Given that each policy statement ps; can be converted into a QF-MTL formula
i, the QF-MTL equivalent of ¥ denoted with ¢ can be logically viewed as
combining ¢; with logical conjunctions (i.e., ¢ = A, ;). Conceptually, this is
similar to using the “DENY overrides ALLOW” conflict resolution mechanism to
combine compliance verdicts of the different policy statements. In this mecha-
nism, an action is thus allowed only if all the policy statements have the ALLOW
verdict (i.e., evaluates to true) for that action. Note that, if an action falsifies the
<target clause> component of each rule, then it is trivially allowed. It is also
possible to easily extend the language to support other conflict resolution mech-
anisms (e.g., “ALLOW overrides DENY”, “first applicable policy statement”).

Our discussion of formal semantics will thus be complete as long as we de-
scribe how to convert each policy statement ps; to its equivalent QF-MTL for-
mula. In our presentation, @applicable action, Pcondition, aNd Pexception are meta-
variables representing corresponding QF-MTL formulas capturing the appli-
cable action, condition, and exception of a statement, respectively. We inter-
pret the allow statement as the following QF-MTL formula: @applicable action =
Pcondition /\ TPexception- 11 the similar vein, we interpret the deny statement as
the following QF-MTL formula: @applicable _action = Pcondition V Pexception-

8 F. Author et al.

In case either the optional condition or exception block is missing, we consider
them to be logical TRUE (i.e., @condition = LRUE) or FALSE (i.€., QYexception =
FALSE), respectively. When the condition block contains everything, we consider
Papplicable_action = TRUE. Otherwise, obtaining Papplicable_actions Pcondition and
@Pexception from policy syntax are straightforward. Each syntactic element are
replaced by its logical equivalent (e.g., not with —, or with Vv, and and with A).
Similarly, the temporal operators will be replaced by their usual equivalent. For
a given temporal formula @, a trace o, and a position i in it (i.e., 0 <i <| @ |),
we write 0,7 |= @ if and only if ¢ evaluates to true in the i" position of o [6].

4.3 Policy Decision Function

PATRIoT’s policy decision function (A) takes as input an attempted action a,
the current execution trace o = (sg, $1,...,8,—1), and a policy ¥ (whose QF-
MTL equivalent is ¢), then decides whether a. is compliant with ¥. In case
ac is compliant (i.e., ¢ evaluates to true), A returns ALLOW; it returns DENY,
otherwise. PATRIoT’s decision function checks whether o/,n =7 ¢ where o/ =
(80581, -3 Sn—1,5n) and S$p_1 % s, € T. For checking o', n =’ ¢, we rely on
standard runtime monitoring algorithms from the literature [TIIT3IT4I22I35/36/15].

5 Implementation

To demonstrate the generality of PATRIoT, we have instantiated it for both in-
dustrial IoT (EVA ICS [4]) and smart-home systems (SmartThings [7] and Open-
HAB [5]). Although these systems share similar design principles with respect
to other IoT platforms, each presents unique challenges for PATRIoT instan-
tiation. Since EVA ICS, SmartThings, and OpenHAB do not provide native
APIs support for policy enforcement, we hooked PATRIoT in these platforms
automation unit execution engine (shown in Figure [2)) such that all PATRIoT s
necessary components are realized by code snippets (automatically generated
by an accompanying toolchain, which we call as the instrumentor). That is,
the auto-generated code can be deployed inside the IoT platform alongside the
apps logics. This makes PATRIOT self-contained since it does not require any
custom service from the target platforms and can enforce policy compliance by
the platform’s app execution engine.

As shown in Figure [2, PATRIoT’s instrumentor takes the policies and IoT
apps as inputs and automatically generates instrumented-, ready-to-be-deployed-
apps as outputs. The instrumentor is written as a Python script and internally
uses its own parser (generated by ANTLR [I]) to parse policy language syntax
(step @). Once parsed, its semantics will be encoded as a part of Policy Decision
Point (PDP) in the platform’s supporting language (step @). The PDP code
is also accompanied by all the necessary codes retrieving information about the
system/devices states. The instrumentor also parses the apps source code to find
the actions of interest (i.e., the function calls sending command). These actions
are then guarded with an if block, predicated on a function call to PDP by

PATRIOT: Policy Assisted Resilient Programmable IoT System 9

State Action

|

1

Policy Programmable loT Platform Abstract Device API

Author ~===~ »| Policy Language 5

¢ PEP@
| Encode App i

@ Execution PDP/PIP h— PEP

. Engine e

§ (8PP Jommmm Instrumentor | Encode) 7
- A

Source code T Instrument i

Fig. 2. The flowchart of automation tool to deploy PATRIoT with the necessary com-
ponents inside the target programmable IoT platform.

passing the request context as its arguments. With that in place, PATRIoT can
enforce the policies given the decision result from PDP at runtime. That is, the
requested action is either allowed to be taken or simply needs to be dropped.

Note that, there are two main aspects need to be considered in the design of
PDP. First, it should be deployed at a place reachable by every guarded action
in the apps inside the execution engine, whilst preserving a global view of the
entire system state. Second, each function call to PDP for each guarded action
needs be synchronized. This is due to the fact that multiple action commands
from different apps can be called roughly at the same time, which might cause
some state change while the current thread running inside PDP has already read
its old value. Therefore, once the decision has been made in PDP, it will be no
longer valid since its premise might have changed. This is a well-known con-
currency issue called Time-of-check Time-of-use (TOCTOU) race condition [3]
which can be addressed by some synchronization mechanism. Note that, allowing
only sequential actions is not restrictive, as eventually they will be serialized in
the network modem; however, it may affect the performance of the system. Once
the instrumentation is finished, the generated code can be run inside the automa-
tion execution engine of a platform (step @), which automatically prevents the
system from entering into an undesirable state during its execution.

5.1 Platform-specific Implementation Details

In the following subsections, we discuss the important details of the instrumen-
tation in our targeted IoT platforms.

EVA ICS EVA ICS is an IoT platform for the automated system development
in both industrial and home environment [4]. The automation units in EVA ICS
is called macros which mainly supports Python as its scripting language.

PEP. EVA ICS provides uniform APIs (e.g., action(), action_toggle()) for
performing actions in a macro. Calling these functions with appropriate argu-
ments result in a global state change. For instance, action(’zonel/lifter -
robot’, status=1) will activate lifter robot residing in zonel. Our instru-
mentor uses its own custom parser to spot these actions in macros’ source code.
Once identified, its arguments (e.g., ’zonel/lifter robot’ and 1) are ex-
tracted to be then passed to PDP as part of the request context. The identified

10 F. Author et al.

action is then guarded with an if block, whose condition is a function call to
PDP to which the pre-extracted information such as the target device and com-
mand name are passed as its arguments. EVA ICS also provides native support
for locking mechanism via lock() and unlock() functions, which can be used
to address synchronization issue discussed earlier.

PDP /PIP. EVA ICS runs macros whose source codes reside in a specific folder
in the system. If any piece of code needs to be shared among them, it has to be
stored in common.py and also located in the same folder with the apps. Given
that it can be readily accessed by the other macros and any code inside of it
can see the entire system states, common.py file is our target to store the policy
decision function encoding the semantics of policy language policies. There are
other platform-supported features used to capture the request context inside the
PDP function (e.g., 08 variable for obtaining current macro’s full identifier and
_source variable to access the item generated the event).

SmartThings SmartThings is a cloud-based smart-home platform with a pro-
prietary back-end that can provide automations among SmartThings-powered
IoT devices. The automation units in SmartThings are called SmartApps which
support a restricted subset of the groovy language [7].

PEP. SmartThings uses a variety of methods for performing an action. For
example, it uses on() method of an object with capability.switch to turn it on
(e.g., lightl.on()). Given a pre-compiled action list, the instrumentor parses
the source code of SmartApps to find those actions and then guarding them
with PEP-related statements. Since SmartApps are groovy-based programs, we
use groovy meta-programming feature [2] which allows traversing the Abstract
Syntax Tree (AST) of a SmartApp. To this end, we use a groovy script that
uses ASTTransformation class to write a custom ASTNode visitor to spot each
method call in the pre-compiled action list and then replacing it with a ternary
operator such that in the condition portion it checks whether the function call
to PDP is evaluated to be true. In the true branch, it performs the guarded
action while in the false branch it logs that the action is denied. The ASTNode
visitor also extracts the necessary request context and passes them to PDP as
arguments. After visitor’s pass, our groovy script translates the AST back to the
source code and spits it out as the instrumented SmartApp.

PDP /PIP. Recall that, PDP needs to have a global view of the entire sys-
tem. In SmartThings, this can be achieved through the Parent-Child Smar-
tApps relationship structure in which the PDP is defined as a function in-
side a parent SmartApp, so-called policy manager, while the previously instru-
mented SmartApps are considered as its children. This setup not only features
all SmartApps to call the same PDP function but also enables the PDP to
access the state of all devices used by the SmartApps. Unfortunately, Smart-
Things does not provide any built-in synchronization primitives. To address
concurrency issues, we have built PATRIoT lock management server which is
(i) RESTful: SmartApps requests for a lock by a simple HTTP post (e.g.,
http://(domain : port)/locks/PatriotLock). The server notifies them whether
lock is acquired or not by a HT'TP response code (e.g., 201: The lock is acquired;

PATRIOT: Policy Assisted Resilient Programmable IoT System 11

408: lock is not acquired). SmartApps release the lock by a HTTP delete; (ii)
Queue-based: It simply uses FIFO approach to give the lock to the oldest
request. The further requests have to wait for the one who acquired the lock
to release it and then the older request can acquire it (if the request has not
gotten timed-out); (iii) Starving-free: The created lock has a lifetime in sec-
onds which server starts counting down from each request which successfully
acquires the lock. So, if the client does not release the lock before the lock life-
time, server simply releases the lock; and (iv) Secure: It uses HTTPS for each
request and release. Each request/release is authenticated (using a pre-shared
key) and replay protected; therefore, a malicious entity cannot make illegal lock
request/release.

OpenHAB OpenHAB is an open-source smart-home platform that can be
deployed locally. The automation units in OpenHAB are called rules and are
written in a domain specific language (DSL).

PEP. OpenHAB has a well-structured category of actions that can be used
inside a rule to perform an action. Our instrumentor uses that to select the
actions of interest. For instance, sendCommand () and postUpdate() are methods
for sending a command to an item and updating an item’s status, respectively.
Since rules in OpenHAB are written in a DSL, we developed a custom parser
to instrument a rule’s source code. The synchronization issue in OpenHAB is
handled using mutex lock provided by the platform.

PDP/PIP. In OpenHAB, rules written in the same file can share global vari-
ables and utilize the common functions. Given that, the instrumentor merge all
rules into the single rule file and encode PDP as a common function.

6 Evaluation

In this section, we evaluate our instantiations of PATRIoT. The main goal of
our evaluation is to demonstrate PATRIOT effectiveness in maintaining the user
expectations and its efficiency in terms of runtime overhead on a host platform.

6.1 Effectiveness

To showcase the effectiveness of PATRIoT in each platform, we built a testbed
containing several IoT devices and constructed different scenarios in which some
undesired action(s) can occur.

EVA ICS

Testbed. The testbed is similar to a realistic production line of a chemical plant
aiming to combine metal blocks with two other compounds in a furnace. Table[]]
and Table [2] show the item list and simplified apps used for this testbed, respec-
tively. To setup the testbed for EVA ICS, we deployed EVA ICS-3.2.4 [4] on a
machine powered by an Intel Core i7-6700 3.40GHz CPU and with 32GB RAM.

12 F. Author et al.

Table 1. Item list used for EVA ICS chemical plant testbed

compound__valveOl[liquid_level _indicator01 (11i01)
compound_valve02 | presence_sensor01 (ps01)
conveyor__belt presence_sensor02 (ps02)
drain_valve quality_control_sensor01 (qc01)
Tifter_robot temperature_sensor01 (£s01)
Tifting_arm woight_sensor01 (ws01)
mixing_robot woight_sensor02 (ws02)

stopper processed__sensor

water_valve

Table 2. Automation units used in EVA ICS testbed

[ID [AU Description]

ws01 sensed
AU | 222 2P activate lifter_robot

ws02 sensed
AUqg | WEZZ SFBRE | activate stopper

psO1 sensed .
AU | 2" """, activate mixing_robot

mixing_robot activated . . j .
AUy if 11i01 off: activate lifting arm; open

compound_ valveOl; open compound_ valve02;
AU ts01 on

open water__valve

qc01 passed . . N -
AUg|— if tsO1 off: open drain_ valve; deactivate mixing_ -
robot;

AU7 mixing_robot deactivated

deactivate stopper

s02 sensed
AUg p—» set processed;

The testbed production line is designed to receive a metal block at a time
and deliver it to the furnace in order to be combined with two other compounds
and then drain the mixture into another production line (not covered here) and
start the whole process again for a new batch. In this periodic operation, each
element in the system takes a fixed amount of time to perform its task and deliver
its output to the next element. The design of the system guarantees that the
overall time needed for each iteration is significantly longer than the total time
needed by each element in isolation. Each iteration starts when a pallet carrying
a metal block has been placed on a weight sensor ws®1, which activates AUj.
The robot then lifts the pallet and places it on the conveyor belt. The conveyor
belt’s weight sensor ws02 notifies the stopper in the middle-end of the line about
the incoming pallet via AUs. Once arrived, the stopper engages the pallet and
detaches it from conveyor belt. The presence sensor ps@1 then detects package
arrival and AUj activates the mixing robot. According to AUy, the mixing robot
then checks whether the liquid level indicator 11181 inside the furnace is off and
then activates the lifting arm to take the metal block off the pallet and puts it
inside the furnace. It then opens the compound valves 1 and 2, respectively. As
the result of some chemical process, the temperature of the mixture goes up until
the temperature sensor ts®1 trips. In that case AUs opens the water valve to
cool down the mixture. Once cooled, it reaches to the point making the quality
control sensor qcO1 to indicate “passed” signal. Then, AUs gets executed and
monitors ts®1 to double check whether it is safe to open the drain valve and
reset the mixing robot. Deactivating the mixing robot then releases the stopper
(AUr) which puts the pallet back on the conveyor belt letting it to go towards the
end of the line where presence sensor ps02 resides. Once ps02 tripped, it signals

PATRIOT: Policy Assisted Resilient Programmable IoT System 13

the batch process has completed (AUg) and pallet will be removed automatically
from the conveyor belt.

Although this production line works fine for most situations, there are some

undesired cases that can cause fatal physical damages such as conveyor belt
blockage, liquid overflow, and ruining the batch.
Scenario #1 - Conveyor belt blockage. There are several reasons that can
cause multiple pallets to be on conveyor belt at the same time making the
conveyor belt to break because of its weight tolerance limitation or crashing a
few pallets into each other. Having multiple pallets at the same time can happen
if the the previous pallet got stuck on an obstacle next to conveyor belt or
malfunctioning stopper. Therefore, after passing the iteration time limit, our
simulation has shown that multiple pallets can be placed on the conveyor belt
causing the blockage. This undesirable situation has been prevented by PATRIoT
using the policy in the Listing which says “deny activating the lifter robot
only if since the last time it was activated, no batch has been processed”.

Listing 1.1. policy language Policy P1 to address conveyor belt blockage
POLICY P1:

DENY action_command = on and action_device = gl/lifter_robot

ONLY IF LASTLY(SINCE(state(unit:gl/lifter_robot) = on, value(gl/processed) = 0))
Scenario #2 - Liquid overflow. The production line is also susceptible to
furnace overflow causing severe physical damages. According to our simulation,
this undesirable situation can occur if, for example, the drain valve is faulty
such that it cannot completely drain the previous batch and some significant
amount of mixture liquid has remained in the furnace, which is still below the
11i01 threshold. Therefore, once the next batch comes in (including the metal
block, compounds 1 and 2, and the water) it will cause liquid overflow. PATRIoT
prevents such undesirable situation via the following policies which simply checks
the liquid level before taking any actions causing adding a substance to the
furnace. This scenario with policies (P2-P5) in place could still create a conveyor
belt blockage which will be prevented by the policy P1.

Listing 1.2. policy language Policies to address liquid overflow

POLICY P2:
DENY action_command = on and action_device = gl/lifting_arm
ONLY IF value(sensor:gl/11i01) = on

POLICY P3:
DENY action_command = on and action_device = gl/compound_valve®1l
ONLY IF value(sensor:gl/11i01) = on

POLICY P4:
DENY action_command = on and action_device = gl/compound_valve®2
ONLY IF value(sensor:gl/11i01) = on

POLICY P5:
DENY action_command = on and action_device = gl/water_valve
ONLY IF value(sensor:gl/11i01) = on
Scenario #3 - Ruining the batch. This scenario is based on the requirement
which warrants that water will be added to the mixture only after compounds
1 and 2 have been poured. If the metal block is placed in the furnace containing

14 F. Author et al.

water, that batch will be considered as ruined. This situation can happen in
our testbed when for some reason (e.g., ts®1) water valve opens before mixing
robot is activated in an iteration. PATRIoT uses the following policy to avoid
this situation. The policy “allows activating the mizing robot only if since the
last time it was activated, water valve has not been opened” .

Listing 1.3. policy language Policy P1 to address conveyor belt blockage

POLICY P6:
ALLOW action_command = on and action_device = gl/mixing_robot
ONLY IF LASTLY(SINCE(state(unit:gl/mixing_robot) = off, state(unit:gl/water_valve) =
off))

SmartThings and OpenHAB

Testbeds. To perform our evaluation on the smart-home platforms we built two
testbeds for SmartThings and OpenHAB in which we leveraged 48 IoT devices
for our setup [6].

In order to setup the testbed for OpenHAB, we deployed OpenHAB 2.4 [5] on
a Raspberry Pi 3 Model B+ and created our virtual devices inside the platform.
Virtual devices in OpenHAB can be controlled and monitored via a web-based
interfaced provided by the platform. For SmartThings, we used SmartThings
web-based IDE to create these virtual devices. In order to control and monitor
the status of these devices, SmartThings provides a companion mobile app, so-
called SmartThings, which we used for this experiment.
IoT Apps. For our experiment, we used 122 SmartApps for SmartThings and
20 rules for OpenHAB which we collected from SmartThings official repository
[8], IoTBench [I6], and the developer community forums. All rules have been
manually investigated to establish the ground-truth and understand their se-
mantics and intentions. Unlike static analysis approaches, PATRIoT provides
runtime protection; therefore, to evaluate its effectiveness, all these rules need to
be executed in different scenarios and through the pre-established ground-truth
one should validate whether PATRIoT can maintain user-specified policies.
Policies. In our experiment, we used 33 policies which are listed in Table
These policies are specified after studying the literature and acquiring the nec-
essary knowledge by manually investigating the rules. Although the English de-
scription of these policies are provided for exposition, the policy language rep-
resentation of these policies can be found in [6]. Table |3| also shows the main
goal of each policy. For instance, P1 restricts sending SMS by the rules to only
those that the user expects to do so. In that case, all other apps trying to send
SMS, whether maliciously or not, will be blocked by the policy. This policy aims
to protect the user against any privacy violation. Policy P27 also protects the
expensive appliances (e.g., water pump) from any damage that might be caused
by repeatedly turning them on and off which can be as a result of a loop of
actions because of a semantic bug or a malicious intent.

In order to evaluate the effectiveness of PATRIoT we created three sample
scenarios to illustrate that the specified policies are maintained by the system
at runtime.

PATRIOT: Policy Assisted Resilient Programmable IoT System 15

— Privacy. In this scenario, the main focus is on Policies P1 and P2. Given
these policies, PATRIoT only allowed user’s authorized apps to send SMS while
denying the action for other apps. For instance, a malicious app pretending to
strobe the alarm when CO2 is detected while maliciously sending an adver-
tisement before strobing the alarm. However, PATRI0OT is able to successfully
block that advertisement by sms at runtime.

— Qwerprivilege. This scenario mainly focuses on Policies such as P3 and P14
and PATRIoT only allowed the authorized apps to unlock the door and open
the garage. Those malicious apps such as the one that monitors the battery
level of the lock but sneakily detects that nobody is at home and then unlocks
the door, are successfully blocked.

— Interplay. The focus of this scenarios is on Policies that can protect users from
some hidden- unwanted actions such as P5. Based on fire-sprinkler app and
dry-the-wetspot app, actions might interfere and as a result water valve gets
closed while there is still fire to contain. Given the policy PATRIoT successfully
blocked unwanted closing of water valve.

6.2 Efficiency

In order to measure the runtime overhead of PATRIoT incurred on EVA ICS,
SmartThings, and OpenHAB, we calculate the computation time of executing
each automation unit with and without PATRI0T in place and then compare them
to each other. Figure |3| illustrates the runtime overhead incurred by PATRIoT
in different platforms, which is on average 8.96%, 9.44%, and 11.52% for EVA
ICS, OpenHAB, and SmartThings, respectively. This runtime overhead depends
on: (i) the number of actions happening at the same time; (i) the complexity of
the policies related to an impending action; and (4ii) synchronization mechanism
support for a platform. To have a fair evaluation, we carefully established our
testbeds to closely reflect real-world IoT setups. For the application we had,
although this overhead is acceptable, this could be an interesting future work to
discover tighter overhead threshold for different applications. Figure[d also shows
the portion of the PATRIoT overhead incurred by locking mechanism. Among
these platforms, SmartThings has the most locking overhead since it uses our
external https-based lock manager. The locking overhead can be reduced, if we
have native synchronization support form SmartThings.

7 Related Work

Prior efforts in ToT security are broadly focused on devices [33I27I3TI3SIT0I23],
communication and authentication protocols [34J42I2543]. There are signifi-
cant efforts focusing on unexpected behavior on programmable IoT systems
[24120132126)3 721128300040/ T7ITIT8I29044], which is also the focus of this pa-
per. Broadly speaking, there are two main approaches to address this issue: static
and runtime monitoring approaches. The static approaches [243720/T7/30] are
mostly pre-deployment techniques used for either: (i) further investigation like

16 F. Author et al.

PATRI0T Overhead boo Lock Overhead
2500 “No i - uOther operations
0 Instrumentation 250 .
2000 Incurred overhead 248 Locking overhead
200 121
1500
150
1000
100 4 9 127
500 so| [80

. 0

EVAICS OpenHAB SmartThings EVAICS OpenHAB SmartThings
Fig. 3. Runtime overhead (in milliseconds) Fig.4. Runtime overhead (in millisec-
incurred by PATRIoT because of the in- onds) incurred by PATRIoT’s synchroniza-
strumentation. tion mechanism.

taint analysis to find out how private data is consumed by the apps (i.e., whether
or not there is any unwanted operation performed on the data); (i) verifying
that it satisfies a set of properties described as its correct behavior; or (%) recti-
fication aiming to fix mistakes in writing the trigger-action rules in it. Runtime
monitoring based approaches, on the other hand, aim to provide post-deployment
solutions to prevent unsafe/undesired operations at runtime [284TT8]. These
prior efforts, however, either require human intervention or cannot support rich
temporal policies. Extensive work has been done in developing efficient run-
time monitors using different types of logic [T2IT3IT4I22I3536/15]. Prior works
on IoT security, however, have not leveraged these rich policy languages and do
not take advantage of the developments in the runtime verification community.
Apart from these works, there have been efforts repairing or synthesizing rules
based on given properties [44] to make sure IoT apps behave as expected.

8 Discussion

PatrloT policy expressiveness. In contrast to existing IoT policy languages
[28M4TIT8|, PATRIoT policies have a formal semantics, are more expressive, and
can specify existing IoT policies in the literature. With respect to MFOTL,
however, PATRIoT policies neither support quantification nor arbitrary function
symbols. Although such restrictions consciously limit the expressive power of
the language to applicable to general policies, they are not only necessary for
efficient monitoring but also sufficient to express existing IoT policies.
Authoring PatrIoT policies. For PATRIoT s effectiveness, it is crucial for the
users to be able to write the correct and consistent policies. To be practically
deployable, one would require to consider the usability of the language as well as
tool support for identifying inconsistent policies. To limit the scope of this paper,
we focus on the technical foundations of PATRIoT and considering deployment
issues are subjects of future work.

Extending PatrIoT applicability. Current instantiation of PATRIoT assumes
a centralized IoT architecture. However, one can envision extending PATRIoT for

PATRIOT: Policy Assisted Resilient Programmable IoT System 17

decentralized IoT architectures. For this extension, however, one would require
the decomposition of global policies into local policies that are to be enforced on
the IoT devices themselves. Additionally, the device-centric policy enforcement
mechanisms would need to communicate to ensure the consistency of the global
system and policy states. This is a subject of future work.

Performance overhead of PatrIoT. We observed that PATRIoT on-average
incurs < 100 milliseconds of runtime overhead in systems whose app program-
ming interface have native support for synchronization mechanism (e.g., mutex).
For Samsung SmartThings, PATRIoT on-average induces an overhead of 248 mil-
liseconds of which 48% is due to its web-based locking mechanism. Such over-
heads are tolerable in a non-safety-critical system such as a home automation
system. For real-time systems, however, this overhead needs to be decreased. One
possible solution to this high overhead is to realize PATRIoT by incorporating it
in the back-end.

Limitation. Currently, PATRI0oT can only regulate actions contemplated by IoT
apps. Actions triggered by third-party service (e.g., IFTTT) or user interaction
with the companion mobile app cannot be regulated by PATRIoT. To mitigate
this limitation, one would require installing PATRIoT in the backend. Installing
PATRIOT in the backend may require app instrumentation for collecting context
information. Extending PATRIoT with such support is future work.

9 Conclusion

We presented PATRIOT, a runtime monitor that dynamically ensures that ac-
tions performed by IoT apps installed in an IoT system do not violate desired
policies crucial for assuring the security, privacy, and safety of the users and
system. To express policies, PATRIoT provides a platform-independent policy
language policy language that can effectively capture system invariants as well
as different temporal behaviors including explicit timing restrictions and count-
ing operator. For compliance checking, PATRIoT uses an existing, efficient dy-
namic programming algorithm which encodes the relevant information in the
system’s execution history into summary structures that can be quickly looked
up during policy checking. Finally, we evaluated PATRIoT’s generality, efficacy,
and efficiency by instantiating it for three popular open-source IoT platforms We
tested 33 policies against 122 SmartThings, 10 policies against 20 OpenHAB,
and 6 policies against 8 EVA ICS automation units. The performance overhead
induced by PATRIOT is as low as 248 ms for SmartThings, 89 ms for OpenHAB,
and 73 ms for EVA ICS, demonstrating the efficiency of our proposed framework.

Acknowledgments

We are grateful to the anonymous reviewers for their insightful comments and
suggestions. This work was supported by DARPA CASE program award N66001-
18-C-4006. Any opinions, findings, conclusions, or recommendations expressed
herein are those of the authors, and do not necessarily reflect those of the US
Government or DARPA.

F. Author et al.

18

3uiaes A31ouy ‘A1oJeg om0y 9e SI 19sn JI A[uo pauado oq 0} mopuim Moy | eed
Suraes A31ouy ‘Ajojeg ‘OpOW UOTJBORA UO J0U ST WAISAS o) J1 A[uo pouodo oq 03 mopuim Moy |ged
Suraes A31ouy “yStupiw 199je SI 91 J1 AJuo A J, uo Jutuang Aus| 1¢d
Suraes A31ouy ‘AjrIndeg ‘owIoy Je ST I9sn J1 A[Uo [0A9] Y31 Suidueyo Moy |0ed
uor3o9j01d o8ewreq 098 ()T UIYim Uo sem 91 A[3se] JI A[UO JejsouIoy) Jo Suruiny mol[y | 6gd
Ayoyeg AIp SOSUOS I0SUDS auInjsiowt juowdseq oyl JI Ajuo dund 1ojem Jo Suruiny mol[y | 8cd
uor109901d o3ewre(y '09s (g Uulyym uo sem 91 A[ase] J1 Ajuo dund 199em Jo Suruiny Moy | Lod
uorjoejoid oFeure('09S ()¢ UIYIIM UO sem 91 A[)se] JT AJuo A J, Jo Surwing mo[y |9zd
uor3o9301d o8ewreq 098 ()¢ UIYIIM UO sem 91 A[9se[JI AJUO SUIYDRW 99JJ0d PO Sutuiny Moy | Ged
Ajegeg ‘A1anooeg “quosoad st ooussaxd Aw J1 A[UO owWOY 0} opow oY) Jur}3es Moy |Fod
Ajejeg ‘A11anodeg ‘quesald jou st 9oussald Awr Jj1 AJuo Aeme 0} opowr o) SUl1)9S MOV | €T d
Suraes A31ouy ‘sAep g uigym AIp uooq set] 41 ‘}om Posuds IOSUSS 9IMNISIOW 9dUlS JT A[uo Jo 08 09} uoryeSiiil Aua(]|zed
A91and9g ‘Ayduwre st pod A[3se] pur pPaso[d SI J0Op JOLI9IXS O} JI AUO I00p Iolmjul o) Sutuado MOV | 1Zd
uorjoejoid oFeure(q 008 ()¢ ulyim uado sem 941 A[ISe[JT A[UO POSO[D 9 0} MOPUIM WOOI SUIAI] MO[[Y | 0Zd
Buraes AS1ouy 09s (09 ulyyim paddiiy 1030930p uorjowr A[3se| j1 AJuo pouado 9q 03} MOPUIA\ WOOI SUIAI] MO[[Y | 6Td
Suraes A31ouy PO o1e)Yy pue I0jeoy y3oq j1 A[uo pouado 9q 03 MOPUIM WOOI JUIAI MO[[Y |8Td
ASwoug ,uoﬁoamﬂw\mw "JO ST DV 2Y3} JT A[UO UO PaydIIms oq 09 I93edl] MO[[V | LTd
Buraes . .
ASwoug ‘OUSIUSAUOD) O SI 193eay oY) JI A[UO UO PaydIIms aq 03 DY MO[[Y |9Td
008 Se[oY) UIYiIm oxows
foyes “Ayrmoog $10030p 1010030p oyjouwrs 1dooxe opowr dod[s Ul ST WAPSAS 91} I0 SWOY JB J0U SI I9sn JI A[UO uomm wQme Mmu VMMW:: ME@Q S1d
A91and9g ‘dde 1eusdo-100p-a8ried Aq pajsenbal st 91 9deoxe 100p a3eied oY) 3utuado Aus(|F1d
uor}09301d o8ewreq '09S ()¢ UIYIIM UO sem 91 A[Ise] J1 A[uo Jo pauany oq o} 131 MOy | eTd
QOULIUBAUO)) ‘dde 1eaes-A310ue Aq pajsenbal st 91 J1 AJUO A J, 10 101RI881IJa1 o) Jo Suruiny Aua(|gT1d
Ayo)eg '9WIOY e J0U ST 1SN 9YJ JI A[UO duIyoewW 99jod oY) uo Juruing Auo | 11d
*OWOY J® J0U ST I9SN O[IYM 9JNUTW [UIYIIM POSUSs SI UOIJOW IO ‘OJNuriul T uryirm
9OUBIUDAUO) . 01d
19M POSUDS I0SUDS POOJ I0 ‘9JNUIW T YIIM ZOD/9OUIs §10919p 1010999p god /oxowis A3se] J1 A[uo jjo oF 07 UaIls Mo[[y
Suraes A31ouy 098 (g ulgym paddiiy sey Josues uorjowr Aemirey ayj j1 A[uo uo pauinjy 493 03 3| Aem[ey MOV | 6d
Juiaes A3rouy ‘Ajojeyg 9wy e ST I9SN JI A[UO UO payd}Ims aq 01 I MO[[y| Sd
A91Ind9g auwroy je s1 1osn 3deoxs Jo pauang 1938 09 vIswed ddUR[[IAINS AUa((| Ld
Juiaes A31ouy ‘Ajojey ‘OpOW UOTJBORA UO J0U ST WAISAS 919 JI A[UO U0 pauinj aq 03 Y31 Aue mo[[y| 9d
JNEIEN ‘9INUII T UIY)IM J9M POSUSS IOSUSS YBI[19jem JI AUO PAsO[D 9 0 9A[RA I9)em MO[[Y| Gd
Ayoyeg 'SINOY G 9SB[9} Ul UO J0U Sem JI9ulids-o1y o) J1 A[UO POsO[d 9q 0} dA[RA I9jem MO[IY| ¥d
A91and9g ‘dde 100p-3oo[-0Ine-padouryua Aq pajisenbal st 91 J1 AJUO I00p JuOI] o) Juroo[un Moy | ¢d
A31noag ‘Aoeatid ‘3sonboax dyay (e Ausq| zd
< ‘sdde 10j1UOW-AIpUNn®e] 10 UIRI-I0J-APeaI I0 1X03}-08Ur(D-00U0saId IO IOPUIWIDI-OUIDIPOUT
orALlld Id
10 poAllIR-[IRW 10 JI9[e-A}Iplwiny 1o s}I9[e-A8I10ud 10 }I9[e-POOY Aq poajsenboar st 31 JI A[uo QNS Sulpuas mo[[y
[eo3 ureN uorjdiaosep Ad10d| I

uorjen[eAd Y} ur pasn semwijod jo }sIT g 9[qe],

PATRIOT: Policy Assisted Resilient Programmable IoT System 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Antlr. https://www.antlr.org), accessed: Feb 16, 2019

Apache Groovy — runtime and compile-time metaprogramming. http://
groovy-lang.org/metaprogramming.html) accessed: Sep 13, 2019

CWE-367 — time-of-check time-of-use (toctou) race condition. https://cwe.
mitre.org/data/definitions/367.html, accessed: Sep 13, 2019

EVA ICS. https://www.eva-ics.com, accessed: Sep 13, 2019

openHAB — a vendor and technology agnostic open source automation software for
your home. https://www.openhab.org, accessed: Feb 16, 2019

PatrloT. https://github.com/yahyazadeh/patriot.git} accessed: Aug 16, 2020
Smartthings. https://www.smartthings.com/, accessed: Feb 16, 2019
SmartThings Public GitHub Repo. https://github.com/SmartThingsCommunity/
SmartThingsPublic) accessed: Feb 17, 2019

Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: Sok: Security evaluation of
home-based iot deployments. In: (S&P). IEEE (2019)

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al.: Understanding
the mirai botnet. In: USENIX Security Symposium. pp. 1092-1110 (2017)

Basin, D., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal first-
order properties with aggregations. (FMSD) 46(3), 262-285 (2015)

Basin, D., Klaedtke, F., Miiller, S.: Policy monitoring in first-order temporal logic.
In: (CAV). pp. 1-18. Springer (2010)

Basin, D., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. (JACM) 62(2), 1-45 (2015)

Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for Itl and tltl.
(TOSEM) 20(4), 1-64 (2011)

Calzavara, S., Focardi, R., Maffei, M., Schneidewind, C., Squarcina, M., Tempesta,
M.: {WPSE}: Fortifying web protocols via browser-side security monitoring. In:
USENIX Security Symposium. pp. 1493-1510 (2018)

Celik, Z.B., Babun, L., Sikder, A.K., Aksu, H., Tan, G., McDaniel, P., Uluagac,
A.S.: Sensitive information tracking in commodity iot. In: USENIX Security Sym-
posium. pp. 1687-1704 (2018)

Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated iot safety and security
analysis. In: (ATC). pp. 147-158. USENIX (2018)

Celik, Z.B., Tan, G., McDaniel, P.: [oTGuard: Dynamic enforcement of security
and safety policy in commodity IoT. In: (NDSS) (2019)

Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W.C., Sun, M.,
Yang, R., Zhang, K.: Iotfuzzer: Discovering memory corruptions in iot through
app-based fuzzing. In: (NDSS) (2018)

Chi, H., Zeng, Q., Du, X., Yu, J.: Cross-app interference threats in smart homes:
Categorization, detection and handling. CoRR abs/1808.02125 (2018)

Ding, W., Hu, H.: On the safety of iot device physical interaction control. In:
(CCS). pp. 832-846. ACM (2018)

Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in 1tl. In: (FM). pp. 231-247. Springer (2015)

Edwards, S., Profetis, I.: Hajime: Analysis of a decentralized internet worm for iot
devices. Rapidity Networks 16 (2016)

Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: (S&P). vol. 00, pp. 636-654. IEEE (May 2016)

https://www.antlr.org
http://groovy-lang.org/metaprogramming.html
http://groovy-lang.org/metaprogramming.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://www.eva-ics.com
https://www.openhab.org
https://github.com/yahyazadeh/patriot.git
https://www.smartthings.com/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic

20

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

F. Author et al.

Gong, N.Z., Ozen, A., Wu, Y., Cao, X., Shin, R., Song, D., Jin, H., Bao, X.: Piano:
Proximity-based user authentication on voice-powered internet-of-things devices.
In: (ICDCS). pp. 2212-2219. IEEE (2017)

He, W., Golla, M., Padhi, R., Ofek, J., Dirmuth, M., Fernandes, E., Ur, B.: Re-
thinking access control and authentication for the home internet of things (iot).
In: (USENIX Security). pp. 255-272 (2018)

Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., Wagner, D.: Smart locks:
Lessons for securing commodity internet of things devices. In: (ASIACCS). pp.
461-472. ACM (2016)

Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash,
A.: ContexIoT: Towards Providing Contextual Integrity to Appified IoT Platforms.
In: (NDSS) (2017)

Lee, S., Choi, J., Kim, J., Cho, B., Lee, S., Kim, H., Kim, J.: Fact: Functionality-
centric access control system for iot programming frameworks. In: (SACMAT). pp.
43-54. ACM (2017)

Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J., McDaniel,
P.: Totsan: fortifying the safety of iot systems. In: (CoNEXT). pp. 191-203. ACM
2018

1(\Iotra), S., Siddiqi, M., Gharakheili, H.H., Sivaraman, V., Boreli, R.: An experi-
mental study of security and privacy risks with emerging household appliances. In:
(CNS). pp. 79-84. IEEE (2014)

Rahmati, A., Fernandes, E., Eykholt, K., Prakash, A.: Tyche: A risk-based per-
mission model for smart homes. In: (SecDev). pp. 29-36. IEEE (2018)

Ronen, E., Shamir, A.: Extended functionality attacks on iot devices: The case of
smart lights. In: (EuroS&P). pp. 3-12. IEEE (2016)

Ronen, E., Shamir, A., Weingarten, A.O., OFlynn, C.: Iot goes nuclear: Creating
a zigbee chain reaction. In: (S&P) (2017)

Rosu, G., Havelund, K.: Synthesizing dynamic programming algorithms from linear
temporal logic formulae (2001)

Soewito, B., Vespa, L., Mahajan, A., Weng, N., Wang, H.: Self-addressable
memory-based fsm: a scalable intrusion detection engine. IEEE network 23(1),
14-21 (2009)

Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smar-
tauth: User-centered authorization for the internet of things. In: (USENIX Secu-
rity) (2017)

Ur, B., Jung, J., Schechter, S.: The current state of access control for smart devices
in homes. In: (HUPS) (2013)

Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., Gunter, C.A.: Charting the
atack surface of trigger-action iot platforms. In: (CCS) (2019)

Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and logging in the internet
of things. In: ISOC NDSS (2018)

Yahyazadeh, M., Podder, P., Hoque, E., Chowdhury, O.: Expat: Expectation-based
policy analysis and enforcement for appified smart-home platforms. In: (SAC-
MAT). pp. 61-72. ACM (2019)

Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable)
flaws on a billion devices: Rethinking network security for the internet-of-things.
In: (HotNets) (2015)

Zhang, J., Wang, Z., Yang, Z., Zhang, Q.: Proximity based iot device authentica-
tion. In: (INFOCOM). pp. 1-9. IEEE (2017)

Zhang, L., He, W., Martinez, J., Brackenbury, N., Lu, S., Ur, B.: Autotap: Synthe-
sizing and repairing trigger-action programs using ltl properties. In: ICSE (2019)

	PatrIoT: Policy Assisted Resilient Programmable IoT System

