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Abstract—Numerous routing protocols have been designed and
subjected to model checking and simulations. However, model
checking the design or testing the simulator-based prototype of
a protocol does not guarantee that the implementation is free of
bugs and vulnerabilities. Testing implementations beyond their
basic functionality (also known as adversarial testing) can increase
protocol robustness. We focus on automated adversarial testing
of real-world implementations of wireless routing protocols. In
our previous work we created Turret, a platform that uses a
network emulator and virtualization to test unmodified binaries
of general distributed systems. Based on Turret, we create
Turret-W designed specifically for wireless routing protocols.
Turret-W includes new functionalities such as differentiating
routing messages from data messages to enable evaluation of
attacks on the control plane and the data plane separately,
support for several additional protocols (e.g., those that use
homogeneous/heterogenous packet formats, those that run on
geographic forwarding (not just IP), those that operate at the
data link layer instead of the network layer), support for several
additional attacks (e.g., replay attacks) and for establishment of
adversarial side-channels that allow for collusion. Turret-W can
test not only general routing attacks, but also wireless specific
attacks such as wormhole. Using Turret-W on publicly available
implementations of five representative routing protocols, we (re-
)discovered 37 attacks and 3 bugs. All these bugs and 5 of the
total attacks were not previously reported to the best of our
knowledge.

Index Terms—Automatic testing, routing protocols, security,
wireless communication

I. INTRODUCTION

Mobile ad-hoc networks allow a set of wireless nodes to

communicate with each other without any central infrastruc-

ture. As traditional routing protocols do not perform well in

a constrained environment such as wireless networks, sig-

nificant work has been put into designing routing protocols

for wireless networks. Examples include proactive protocols

such as DSDV [2], and OLSR [3], reactive protocols such

as AODV [4] and DSR [5], and hybrid protocols such as

DST [6]. Additionally, there have also been efforts to improve

the performance of the routing protocols by operating at the

data link layer instead of the network layer, a representative ex-

ample being the BATMAN [7] protocol. Given the increased

threats that exist in wireless networks, several secure routing

protocols have been designed. Examples include SAODV [8],
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ODSBR [9], ARAN [10], and Ariadne [11]. Many of the

protocols mentioned above, such as AODV, ARAN, OLSR,

DSDV, and BATMAN, were implemented and are available

from public repositories [12]–[16].

Given the importance of routing as a fundamental compo-

nent of wireless networks, many protocols have been sub-

jected to model checking the design [17] and to testing

the simulator-based implementation [18], [19]. For example,

several model checking tools [17] were used to verify wireless

routing protocols, and several simulators [18], [19] were used

to demonstrate and test wireless routing protocols [2]–[6],

[20]. While model checking helps to verify the validity of

the design, it does not provide a guarantee that the real-

world implementation is free of bugs and vulnerabilities, since

implementations contain optimizations not captured by the

model, sometimes diverge from the design, and often introduce

new bugs. In addition, while simulators provide easier and

simpler ways to describe a protocol, they sacrifice some

aspects of realism such as the interaction of the protocol with

the operating system components.

Fig. 1 shows the popularity of some wireless protocols in the

academic community (obtained from Google Scholar) — it is

evident that hundreds of researchers use the publicly available

implementations for performance comparison across proto-

cols [21]–[23], or to investigate properties of the network stack

such as performance of TCP in multihop ad hoc networks [21],

[24]. Thus, it is important to ensure that these implementations

are robust and do not include faults and security vulnerabilities

that may lead them to enter an unsafe state or exhibit degraded

performance.

In our previous work, Gatling [25], we showed the impor-

tance of performing adversarial testing for message-passing

distributed systems. By testing systems implementations be-

yond just basic functionality (i.e. examining edge cases,

boundary conditions, and ultimately conducting destructive

testing), we discovered vulnerabilities, many of which were

not captured by model checking the design or by simulator-

based testing. However, Gatling requires the target protocol

to be implemented in the MACE language [26], whereas

Max [27] focuses on two-party network protocols to find

attacks that can manipulate the victim’s execution control flow

by relying on the user specified information about a known

vulnerability of the implementation to limit the search space

and thereby catering itself as more suitable for corner cases.

In this paper, we focus on adversarial testing of imple-

mentations of wireless routing protocols. We consider attacks

and failures that are created through manipulation of protocol
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Fig. 1. Comparison of the routing protocols based on popularity
(computed by searching on Google Scholar). Protocol counts indicate
the total number of citations to the original research paper; Imple-
mentation counts indicate citations to the implementations and the
URL of the software.

messages and are specific to wireless routing protocols, having

a global impact on the protocol performance. We build on our

previous work in automated adversarial testing for distributed

systems by leveraging the design of Turret [28] to create

an adversarial testing platform for wireless routing protocols.

Turret uses a network emulator to create reproducible network

conditions and virtualization to run unmodified binaries of

systems’ implementations. The platform requires the user

to provide a description of the protocol messages and cor-

responding performance metrics. Turret’s design is a good

starting point for a cost-effective wireless testing environment

because it allows a binary to run in its native operating system

while limiting the impact of noise and interference on the

performance of the system. Our contributions in this work are:

• We present Turret-W, a platform for adversarial testing

of wireless routing protocols. Turret-W leverages the

design of Turret and includes new functionalities such

as the ability to differentiate routing messages from data

messages, support for protocols that use homogeneous

or heterogenous packet formats, support for protocols

that run on geographic forwarding (not only IP), sup-

port for protocols that operate at the data link layer

instead of the network layer, support for replay attacks,

and ability to establish side-channels between malicious

nodes. As a result, Turret-W can test not only general

attacks against routing, but also wireless specific attacks

such as blackhole and wormhole attacks. Our approach

is cost effective in comparison with the hardware and

manpower costs required by the approach in [23]. In

addition, our approach does not pose any restriction on

the implementation language like Gatling [25], nor relies

on a priori knowledge of any vulnerability like Max [27].

• We demonstrate attack discovery with Turret-W using de-

tailed case studies on five representative wireless routing

protocols: a reactive protocol (AODV), a secure reactive

protocol (ARAN), and three proactive protocols (OLSR,

DSDV, and BATMAN), whose implementations we ob-

tained from public repositories. We found 1 new and 7

known attacks in AODV, 6 known attacks in ARAN, 5

known attacks in OLSR, 4 new and 7 known attacks in

DSDV, and 7 known attacks in BATMAN, for a total of

37 attacks. While most of attacks we found are protocol

level attacks, one attack in AODV and 4 attacks in

DSDV were solely implementation level attacks, and such

attacks could have been discovered only by testing the

actual implementations under adversarial environments.

• We show that Turret-W also can find bugs, as it provides

a testing environment that is realistic and controllable.

Unlike attacks, bugs cause performance degradation in

benign executions. We discovered 3 bugs in total, 2 in

AODV and 1 in ARAN. The bugs in AODV were due to

a subtle interplay between AODV code and the operating

system kernel.

The rest of the paper is organized as follows. §II provides

an overview of the platform we use in this paper, §III de-

scribes our methodology, while §IV–§VIII present our five

case studies on AODV, ARAN, OLSR, DSDV, and BATMAN,

respectively. §IX describes related work and §X summarizes

the paper.

II. PLATFORM OVERVIEW

Our goal is to test wireless routing implementations, where

the network conditions can be reproducible and also isolated

from outside world interference. In our previous work [28] we

created Turret, a platform for adversarial testing of message

passing distributed systems. The design of Turret makes it

an appealing choice for testing wireless network protocols

because the emulation of the network ensures reproducible

performance and limits the noise and interference, while the

virtualized approach allows binaries to run in their native

environments. However, Turret cannot be directly applied to

wireless networks or routing protocols. Below, we first give

an overview of Turret, the platform that we built on, and

then explain what functionalities we added to support wireless

routing protocols. We refer to Turret with our extension as

Turret-W.

A. Overview of Turret

Turret is a platform for performance-related attack discovery

in unmodified distributed system binaries. Turret uses virtual-

ization (i.e. KVM [29]) to run arbitrary operating systems and

applications, and network emulation (i.e. NS-3 [30]) to connect

these virtualized hosts in a realistic network setting. Turret

requires a description of the message formats that the system

relies on, and a set of metrics that capture the performance of

the system.

A controller bootstraps the system by starting NS-3 and

running application binaries inside the virtual machines. Each

of these virtual machines (VMs) acts as an individual node of

the distributed system. The VMs communicate with each other

with the help of the NS-3 emulator. Specifically, each VM is

mapped to a node inside NS3, called a shadow node, through a

Tap Bridge connection (available in NS-3), which connects the

inputs and outputs of an NS-3 network device to the inputs and

outputs of the VM’s network interface (i.e., the corresponding

TAP device of the VM) as if the NS-3 network device is a

local device to the VM. The controller lets each shadow node

know if it will act as a benign node or as a malicious node.
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TABLE I
MESSAGE DELIVERY ACTIONS IN TURRET

Action Action Description Parameter

Drop Drops a message Drop probability

Delaying Injects a delay before it sends a message Delay amount

Duplicating Sends the same message several times

instead of sending only one copy

Number of duplicated

copies

Diverting Sends the message to a random node

instead of its intended destination

None

TABLE II
MESSAGE LYING ACTIONS IN TURRET

Action Action Description Parameter

LieValue Changes the value of the field with a

specified value

The new value

LieAdd Adds some amount to the value of the

field

The amount to add

LieSub Subtracts some amount from the value

of the field

The amount to sub-

tract

LieMult Multiplies some amount to the value of

the field

The amount to multi-

ply

LieRandom Modifies the value with a random value

in the valid range of the type of the field

None

A shadow node instructed to act as malicious will activate

the malicious proxy, a component implemented by Turret on

top of the Tap Bridge, to intercept messages generated by

the application running inside the virtual machine and modify

them according to an attack strategy. An attack strategy may

consist of two types of malicious actions: Message Delivery

Actions that affect when and where a message is delivered (see

Table I) and Message Lying Actions that affect the contents of

a message (see Table II). In the case of message lying actions,

different fields inside a message can be automatically modified

based on the selected attack strategy and the user-provided

message formats.

B. Limitations of Turret for Wireless Routing

Turret cannot be directly applied to wireless networks or

routing protocols because of several limitations.

Distinguishing between control plane and data plane:

While Turret can inject attacks and faults into any message-

oriented protocol, it does not differentiate data messages from

routing messages. In case of routing, many attacks on the data

plane including degradation in the application performance can

be amplified if the routing mechanism is disrupted. Thus, a

platform intended for routing needs to control independently

both the control (routing) plane and the data plane so that

it can inject fine-grained attacks based on the type of the

control plane messages and coarse-grained attacks based on

the service type of the data plane messages. For wireless

networks, the separation is also needed to support basic attacks

such as blackhole in which an attacker will drop all data

messages but participate in the routing algorithm correctly.

Parsing homogeneous and heterogeneous packets: Turret

expects an intercepted packet to contain only one message

pertaining to the target protocol. Whereas routing protocols are

typically designed to follow either homogeneous packet format

(i.e. the routing protocol packs one type of routing message(s)

into a single datagram) or heterogeneous packet format (i.e.

the routing protocol packs different types of routing messages

into a single datagram). In both cases, the length of the

packet can be fixed or variable. Routing protocols designed

for wireless networks generally adopt either packet formats,

as communication is expensive in wireless networks.

Supporting non-IP packets: Turret assumes that the target

protocol runs on top of Internet Protocol (IP) at the network

layer. Thus, the malicious proxy processes each intercepted

packet as an IP packet. However, not all existing wireless

routing protocols use IP as the packet forwarding protocol at

the network layer. For example, some protocols use geographic

forwarding [31], [32] where packets are forwarded based

on physical proximity. Others such as BATMAN [7] or

HWMP [33] operate at layer 2 (data link layer), instead of

layer 3 (network layer), use MAC addresses for routing instead

of IP addresses and transport routing information encapsulated

into raw Ethernet frames. Therefore, it is important to support

both non-IP and layer 2 routing packets to enable adversarial

testing of such protocols.

Replaying packets: Turret does not provide the functionality

to replay packets. Replaying packets is particularly interesting

in case of wireless networks since it is a very low cost

attack that can easily be launched. Note that packet replaying

is different from packet duplication. In a replay attack, an

attacker records another node’s valid packets and resends

them (without modification) later to other benign nodes via

legitimate channels only if the packets contain the target

control message(s). This causes other nodes to add incorrect

routes to their routing table. Such attacks can be used to

impersonate a specific node or simply to disrupt the routing

plane.

Establishing wormhole tunnels: Turret does not support

colluding attacks. However, an attack specific to wireless net-

works that requires coordination between two attackers and is

shown to be very detrimental is the wormhole attack where two

colluding adversaries cooperate by tunneling packets between

each other to create a shortcut in the network. As wormhole

attacks are feasible (basic attack requires only two colluding

nodes), it is important to be able to test the impact of wormhole

attacks on the routing protocol.

C. Turret-W Description

We modified Turret to address the above limitations. The

new platform, Turret-W, is shown in Fig. 2. The controller

component coordinates the testing. It generates a topology file

for the network emulator using a configuration file provided by

the user. The configuration file specifies parameters such as the

network topology, number of nodes, and number of malicious

nodes. The controller then starts the virtual machines and binds

each of them to the underlying network emulation layer. It then

loads the routing service at the routing layer and instantiates

the application at the application layer. It accepts the list of

attack strategies created by the strategy generator and injects

them into the malicious proxy. Finally, it collects log messages

used to estimate the performance of the application running

on top of the routing protocol.

Wireless network emulation: Like in Turret, the virtual

machines operate on top of a network emulation layer provided

by NS-31. We configure NS-3 to emulate WiFi links. We

leverage the Tap Bridge connection (available in NS-3) to

1Note that Emulab [34], MobiNet [35], Orbit [36] could also conceptually
replace NS3. Emulab with fixed wireless provides more realism. However, the
approach provides less reproducible results because of unwanted interference
on the wireless channel and requires a separate implementation of the
malicious version of the target routing protocol for each malicious node.
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Fig. 2. Turret-W platform (RP:Routing Protocol, RT:Routing Table and VNIC:Virtual Network Interface Card)

connect a VM with its corresponding shadow node so that

it enables a NS-3 net device to appear as a local device inside

the VM thereby allowing the VM to use this local net device

for WiFi transmission. The network emulation layer creates

a virtual multi-hop wireless environment to transmit packets

from a source to a destination virtual machine.

Attacks specific to wireless routing: We modified the Turret’s

malicious proxy (implemented on top of the Tap Bridge) to

differentiate between messages originating from the routing

layer and the application layer based on the port number.

Differentiating data messages from routing messages allows

Turret-W to implement a blackhole attack wherein a malicious

node acts benign at the routing layer but selectively/entirely

drops messages originating from the application layer.

We also provide support for a wormhole attack as follows:

a wormhole tunnel is implemented as part of the malicious

proxy inside NS-3 connecting any two colluding adversaries

(precisely, shadow nodes). However, the routing code running

in the virtual machines are oblivious of this tunnel, which

introduces a new challenge to deal with. If we just forward

data messages between the end nodes forming the wormhole,

one side effect is that the routing will believe there is no

direct link between the two end points of the wormhole.

Therefore, to convince the routing services of the end nodes,

forming the wormhole tunnel, that they are direct neighbors of

each other, we allow these end nodes to exchange their own

beacon messages (e.g., HELLO) over the wormhole tunnel.

At the same time, the beacon messages forwarded between

the ends of the wormhole should be restricted only to those

generated by the end nodes that form the wormhole and not

their neighbors since that will results in incorrect updates

of routing tables. All other routing protocol messages are

forwarded by the colluding nodes over the wormhole tunnel

so that they can perform the wormhole attack in the route

discovery process. As a result, Turret-W supports all the

malicious actions presented in Tables I, II, and III.

Homogeneous and heterogenous packets: To inject a ma-

licious action, the malicious proxy needs to be able to parse

messages in order to act on different message types and to lie

on a particular field of a message. The message-parser reads a

message format description and outputs necessary source code

that feeds into the malicious proxy. This source code contains

a set of API calls (e.g., getMessageType(), getMessageSize()

etc.) that expose properties of the message to the malicious

proxy. An example message format description (a route request

for AODV) is given below:
AodvRreq {

uint8_t type = 1;

uint32_t dest_addr;

uint32_t dest_seqno;

uint32_t orig_addr;

uint32_t orig_seqno;

... }

Routing protocols can follow either homogeneous packet

format or heterogeneous packet format. For instance, AODV

sends a route request message in a single UDP packet and

thus, can be said to follow the homogeneous packet format.

In contrast, OLSR allows individual messages be piggybacked

and transmitted together in one transmission such as a topol-

ogy control message and a HELLO message can be sent

together in a single UDP packet. We modified the message-

parser generator so that it can handle both homogeneous and

heterogeneous packet formats and thus, enable testing of a

wider variety of routing protocols.

Packet forwarding protocols: Typically routing protocol

implementations use Internet Protocol (IP) as the packet

forwarding protocol at the network layer. However, developers

are free to choose other packet forwarding protocols more

suitable for the target network such as geographic forwarding

for wireless ad hoc networks. The DSDV implementation [37]

for the Click Modular router [38] is using such a protocol.

Instead of IP, it is built on top of the Grid service [39] that

is based on geographic forwarding. We modify the malicious

proxy so that it handles routing messages packed into either IP

or non-IP packets, and thus, we enabled the testing of routing

protocols that are built on top of non-IP protocols.

Routing at layer 2: Traditionally routing protocols operate at

layer 3 (the network layer) on top of IP (or some other packet

forwarding protocols). However, several recently developed

routing protocols (e.g., BATMAN) operate at layer 2 (the data

link layer) where the nodes are attached to a unique Ethernet

broadcast domain and are agnostic to the network topology.

Moreover, routing in such protocols relies on MAC addresses

instead of IP addresses. To enable adversarial testing of

routing protocols like BATMAN, our malicious proxy supports

injecting malicious actions into routing messages even when

they are encapsulated and forwarded as raw Ethernet frames.
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TABLE III
MALICIOUS ACTIONS ADDED BY TURRET-W

Action Action Description Parameter

Replay Records valid control messages from a node and

resends them to other benign neighbors

None

Blackhole Drops all data packets but participates in the

routing algorithm correctly

None

Wormhole Creates a wormhole between two colluding nodes

and tunnels packets between each other

None

Wormhole

with

blackhole

Creates a wormhole between two colluding nodes

and tunnels routing packets between each other,

but drops all data packets

None

Attack strategy generation: The strategy generator is respon-

sible for generating a list of attack strategies that the target

protocol should be tested against. For example, consider the

following strategies in case of AODV where the malicious

proxy is being instructed to duplicate each route request

(AodvRreq) message 50 times and drop all the route error

(AodvRerr) messages (i.e. 100%):

DUP AodvRreq 50

DROP AodvRerr 100

Given the message format description of the protocol un-

der test, these attack strategies are generated based on the

malicious actions listed in Tables I and II along with a

value that decides the severity of that action. This attack

strategy generation is inspired from prior work [25], [27], [40].

To support the additional wireless specific attacks listed in

Table III, we extended Turret’s basic set of malicious actions

with replay, blackhole, and wormhole attacks.

Note that Turret-W treats the protocol binary as a black-

box and requires no additional information on the protocol,

e.g., source code. While such characteristics make Turret-W

to be applicable to a wide range of routing implementations,

they may not always lead Turret-W to finding sophisticated

attacks that can manifest deep in the execution. Finding such

attacks often requires more information about the protocol like

the protocol state-machine (required by SNAKE [41]) or the

instrumented source code (required by MAX [27]).

Support for multiple interfaces: Though Turret-W currently

supports routing protocols that rely on a single network

interface out-of-box, the platform can easily be extended

to support routing protocols that leverage multiple network

interfaces [42], [43]. In our current setup, each VM is equipped

with only two network interfaces — one dedicated for the

target routing protocol and another for other purposes (e.g.,

controlling the VM). Therefore, to enable testing of routing

protocols that leverage multiple interfaces, we could equip the

VMs with the necessary number of interfaces and configure

the network emulator to detect these interfaces.

III. METHODOLOGY

We demonstrate our platform on real-world implementations

of five representative wireless routing protocols: AODV [4],

ARAN [10], OLSR [3], DSDV [2], and BATMAN [7]. AODV

is a well-known reactive (routes are determined on-demand)

routing protocol whereas ARAN is not only reactive but also

a secure routing protocol. On the other hand, both OLSR,

DSDV, and BATMAN are proactive (routes are determined

in advance) routing protocols. For AODV, ARAN, OLSR,

and BATMAN we obtained the implementations from their

public repositories [12]–[14], [16], while for DSDV, we ob-

tained the implementation available in the Click modular

router source [15]. Note that the DSDV implementation runs

on geographic forwarding and the BATMAN implementation

operates at layer-2 (the data link layer). In addition, the

implementations of OLSR and BATMAN are being developed

as part of various Linux distributions (e.g., Ubuntu). Next, we

describe the attacker model, our experimental setup and the

selection of system parameters.

A. Attacker Model

We focus on performance attacks mounted by malicious

participants to disrupt the routing service thereby impairing the

protocol performance, which is expressed by a performance

metric that is when evaluated gives an indication of the

progress the protocol has made towards completing its goals.

To find such attacks, we measure the protocol performance,

using the given performance metric, during each execution

of the protocol in the presence of malicious participants in

the network. The achieved performance is compared against

a baseline performance obtained from an execution where all

nodes are benign. We define an attack as follows:

Definition 1 - Performance Attack: When the performance

difference between a malicious execution and a benign exe-

cution is greater than a threshold, δ, we say that the attack

strategy has resulted in a successful attack.

Here, δ is a system parameter that depends on the protocol

under test.

By directly testing real implementations running in their

target operating systems, our platform captures the intricate

interactions between the protocol being tested and the oper-

ating system components. In addition, the isolation and the

reproducibility offered by the emulated and virtualization-

based environment help us discover bugs that impair the

performance of the protocol even in a benign environment.

Such bugs cannot be found in a simulation environment. We

define a bug as follows:

Definition 2 - Performance Bug: A performance bug is an

implementation-level error that limits the practical utility of

the protocol in a benign execution by causing 100% loss of

application packets sent by the source.

B. Experimental Setup

All our experiments are performed on a Dual-Quad core

Intel(R) Xeon(R) CPU E5410@2.33GHz with 8 GB RAM

host machine. We use Ubuntu 10.04.4 LTS to serve as the host

OS. In all the experiments, we use 12 VMs, each allocated 128

MB RAM. For AODV, we use Debian 6.0.5 with Linux Kernel

2.6.32 as the guest OS. One of the advantages of our platform

is that it allows us to execute binaries to run on their target

operating systems. For instance, since ARAN requires an older

kernel, we use Fedora Core 1 with Linux kernel 2.4.22 as the

guest OS.

Our emulated network is a multihop wireless adhoc net-

work. For the 802.11 MAC layer, we use 802.11a with a

bit rate of 6 Mbps and a propagation loss model (called

RangePropagationLossModel, available in NS-3) with a range

of 100 meters for each link. We perform our experiments

using a static grid topology. As an application on the VMs,

we run iperf [44], a network benchmarking tool. In all the

experiments, the performance of the application we report is

averaged over ten runs.
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We obtain a performance baseline using benign testing,

where we randomly select pairs of source and destination

nodes and transfer a stream of UDP packets between them

for 30 seconds. Since we do not intend to stress the protocol

implementation, we use a lower data rate of 128 Kbps so that

the impact of attacks can be easily observed – a low packet

delivery ratio implies an attack [9], [45].

As a performance metric, we use packet delivery ratio

(PDR), i.e., a ratio of the total number of packets (in our case,

application packets) received by the destination to the total

number of packets sent by the source. PDR is easy to measure

irrespective of the underlying routing protocol as it can be

computed from the results produced by the application (i.e.

iperf). Moreover, this metric does not require any instrumen-

tation of the routing protocol implementation, which supports

our goal of testing unmodified routing implementations. For

each protocol, we capture the PDR achieved in each malicious

execution and compare it with the baseline PDR. Given that

we look for attacks that significantly degrade the performance,

we argue that the measured baseline PDR can be used as a

ground truth since it is always closed to the maximum (i.e.,

100%) as per our experimental observation (see § IV- VIII).

We select malicious node(s) randomly and inject malicious

strategies during the entire experiment. We vary the total

number of adversaries from 1 to 4 (out of the total 12

nodes) exhibiting a homogeneous behavior, i.e., we inject the

same attack strategy to each malicious node. For every attack

strategy applied to the routing messages, a malicious node

drops application packets with a probability of p (a system

parameter) to affect the performance of the application.

To demonstrate the effect of blackhole attacks and worm-

hole attacks, we perform experiments with three different

configurations of adversaries: blackhole with one adversary,

blackhole with two adversaries, combination of wormhole and

blackhole with two colluding adversaries. When a blackhole

attack strategy is injected, an adversary participates benignly

in the routing protocol but drops 100% of application packets.

The effect of a wormhole is noticeable in terms of application

performance when combined with a blackhole attack. Remem-

ber that except for blackhole and/or wormhole attacks, we use

the packet dropping probability p to drop application packets

in all other malicious executions.

The threshold δ, a system parameter, is dependent on

the protocol under test. The user can specify the threshold

indicating the amount of performance loss he is willing to

tolerate. Alternatively, it can be determined from ground truth

by recording the observed performances for different attack

strategies and select the threshold value that will detect the

attack manifested by the weakest adversary from the set of

the known attacks where a higher threshold means a more

aggressive attacker. We relied on the second approach. We

consider blackhole with one attacker as the weakest adversary

where the adversary drops all data messages but participates

benignly in the routing protocol. Moreover, we know all

the protocols we are testing are susceptible to blackhole

attacks. Hence, we decide to choose 0.2 (i.e., 20%) as our

threshold so that our tool can detect the blackhole attack.

Intuitively, any successful attack strategy manifested by a

relatively stronger adversary (attacks against both the routing

and the data messages) worsens the performance. Therefore,

the chosen δ would also be able to detect such attack strategies.

Overhead of Turret-W: Routing protocols usually use time-

outs to prevent the use of stale information or provide reli-

ability of transmission. When these timeouts expire, routing

protocols take necessary measures such as removing stale

entries from routing tables, restarting new route discovery, or

entering the recovery state. Turret-W can cause two different

types of delays that will not be observed in real environment.

First, it can cause a processing delay when the network

flow is heavier than the network emulator capacity. Second,

a malicious proxy can add delays while injecting malicious

actions. The first type of delay is due to the nature of emulation

based testing and can be prevented by over-provisioning.

However, the impact of the second type of delay needs to be

measured. To evaluate the amount of delay introduced by the

malicious proxy, we performed experiments with AODV and

OLSR protocols for the malicious attacks listed in Table IV.

We observed that the delay is in the order of tens of µsec with

a median of 40 µsec. Whereas the route expiration timeout

used in AODV and OLSR are 5 sec and 6 sec, respectively.

This result demonstrates that the computation of the malicious

proxy of Turret-W does not have any significant impact on the

routing protocols due to the low overhead.

Scalability of Turret-W: The scalability of Turret-W depends

on (a) the scalability provided by the underlying emulator, and

(b) the scalability of the routing protocol under test. Turret-

W leverages the emulation environment of NS-3 and hence is

subject to its limitations such as not being able to support large

network sizes in the emulation due to the overhead related to

the management of the large number of threads in the NS-3

process [46]. As NS-3 is one of the most widely used network

emulators and the performance of network emulation is not

within the scope of our work, we choose a reasonable size of

network consisting of 12 nodes and focus on networks that can

still operate correctly under a reasonable number of malicious

nodes (up to 30% of the total nodes).

IV. CASE STUDY 1: AODV

We now describe how we used Turret-W to test AODV [4].

All discovered attacks and bugs are shown in Table IV.

A. Protocol Description

AODV establishes a path on-demand. Specifically, when a

source desires to send a message to a destination to which

it does not have a valid route, it starts a route discovery

process by broadcasting a route request (RREQ) message to its

neighbors. Each node then forwards the first received RREQ

by re-broadcasting it to its neighbors. This process continues

until the RREQ reaches the destination or an intermediate

node that has a valid route to the destination. In addition to

forwarding the RREQ, each intermediate node records in its

routing table (i.e., precursor list) the address of the neighbor

from which it receives the first RREQ, forming a reverse

path. Once the RREQ reaches the destination node or an

intermediate node with a valid route, the node responds to

the RREQ by unicasting a route response (RREP) message to

its precursor neighbor, i.e., its neighbor on the reverse path,

which in turn relays the RREP via precursor nodes back to the
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source node. From then on, the source node keeps unicasting

the data to the next hop neighbor as long as the route is valid.

A node maintains connectivity with its neighbors by peri-

odically broadcasting beacon messages (HELLO). Whenever

the next hop becomes unreachable, the upstream node of

the broken link propagates a route error (RERR) message to

each of its upstream neighbors. Following the reverse path,

the RERR finally reaches each source node that contains the

broken link on the route to its destination. A source then re-

initiates the route discovery if a route to the destination is still

desired.

Implementation used: We use AODV-UU-0.9.6 implementa-

tion publicly available from [12], which is RFC 3561 [47]

compliant. The AODV-UU consists of two components —

a loadable kernel module (kaodv) and a user space dae-

mon process (aodvd). The kernel module intercepts and

handles network packets by registering hooks (callbacks)

with the Linux kernel’s network stack. To register such

hooks, kaodv uses the Netfilter framework [48]. The daemon

(aodvd) uses netlink socket to communicate with kaodv and

NETLINK_ROUTE protocol to communicate with the kernel

routing table. We configure the protocol using the default

values presented in [12].

B. Discovered Bugs

During the benign testing of AODV-UU, we discovered two

unknown implementation bugs caused by a subtle interplay

between the AODV-UU code and the kernel.

Bug 1. Kernel interaction order. In an attempt to mea-

sure TCP streaming performance between a source and a

destination that are multiple hops away from each other, we

observed that packets were not being delivered in the benign

case. By design, whenever an application sends a packet for

a destination to which the route is either invalid or unavail-

able, kaodv should hold the packet and notify aodvd to

perform a route discovery. After finishing the route discovery,

aodvd should notify the kernel to update the routing table

and the koadv module to release the withheld packet. Our

investigation revealed that in the AODV-UU implementation,

the order of notification upon completion of a route discovery

was incorrect, i.e., in the reverse order.

This bug could not have been discovered if we had not

attempted to measure TCP performance where the first packet,

i.e., SYN packet is crucial to establish the connection. We

also observed packet loss when initially using UDP, but like

others, we attributed this to the lossy behavior of UDP inside

the wireless channel. We fix the bug by reversing the order of

the two notifications.

Bug 2. Route packets harder. In the process of obtaining

a baseline using iperf, we observed performance degradation

over time despite the route being available and valid in the

routing table. When the kernel transport layer hands-over any

locally generated packet to the IP layer, kaodv receives the

control of the packet via a hook registered with Netfilter. Thus,

kaodv is responsible for returning a value to Netfilter so that

Netfilter can decide what to do – accept/drop/ignore the packet

or call the hook again.

When kaodv receives the control for a packet and already

has a valid route, kaodv notifies Netfilter to continue pro-

cessing the packet by returning NF_ACCEPT. On receiving

NF_ACCEPT, Netfilter sends the packet down the network

stack without performing any further iptables tests [49]. As a

result, Netfilter does not send the packet to the correct next

hop node on the route to the destination. We fix this bug by

invoking ip_route_me_harder() inside kaodv before

returning NF_ACCEPT.

C. Discovered Attacks

Attack caused crashing. We discovered an implementation

attack that can cause all neighbors of a malicious node to

crash. When a malicious proxy modifies an RREQ message

to be an RREP by changing the type of the RREQ message,

a recipient processes this altered RREQ message as an RREP

message. The base RREP message (i.e., 20 bytes) is smaller

in length than a base RREQ message (i.e., 24 bytes) [47].

Therefore, a recipient of the malformed RREQ message pro-

cesses the message as if it were an RREP with extensions [47],

and this causes AODV-UU of the receiver to crash with a

segmentation fault. However, the root cause is an interger

overflow vulnerability in the AODV-UU code. We show the

related code snippet below:
1.void NS_CLASS rrep_process(..., int rreplen, ...){

2. unsigned int extlen = 0;

3. AodvExtension *ext = rrep + RREP_SIZE;

...

4. while ((rreplen - extlen) > RREP_SIZE) {

// RREP_SIZE is 20

...

5. /* read ext length from packet */

6. extlen += EXT_HDR_SIZE + ext->length;

// EXT_HDR_SIZE is 2

7. ext = ext + EXT_HDR_SIZE + ext->length;

8. }

...

9. }

extlen is defined as an unsigned integer (line 2) and there is

no checking if the extension length matches the actual message

size. In this case, the received buffer length (rreplen) is

24 bytes. Therefore, when the RREQ’s originator seq number

field value becomes 21 or bigger, this code will assume that

the message has two extensions, one with 0 length and the

other with length 21 or larger. At line 6, it will first increase

extlen to be 2, which is the header size, then at the second

iteration, it will add 2+21, and thus, extlen becomes 25.

This results in an integer overflow on the left hand expression

of the “while” condition at line 4, and therefore, the loop

continues iterating. Later, the code crashes with a segmentation

fault. This vulnerability can be fixed by enforcing careful type

safety and boundary checking.

Attacks caused by malicious actions. We rediscovered sev-

eral attacks on AODV-UU based on message delivery and

lying actions that decrease the PDR below the accepted

threshold. By design, AODV is known to be susceptible to

these attacks [8], [10]. In case of our benign experiments,

we observe a 98% PDR. Fig. 3(a)-3(c)2 show the temporal

impact of the attacks on PDR as a function of the number of

adversaries in the network. The impact of an attack increases

as more nodes become malicious in the network.

Replay RREP. By replaying an RREP message received

from a node, an adversary can fool its benign neighbors to

2Due to space limitations, we omit the figure for 1 adversary from Fig. 3
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(c) Four adversaries

Fig. 3. Packet delivery ratio for AODV-UU for the discovered attacks against routing messages

believe that the originator is their one-hop neighbor. The be-

nign neighbors that are at least two hops away from the actual

originator believe the adversary is the originator node as they

never receive RREP messages directly from the originator.

This attack is more damaging than others because replaying

the periodic HELLO messages causes these pseudo-links never

to expire. We observe the PDR drops as low as 17% as the

number of adversaries increases.

LieAdd RREP destsq. Whenever a node receives a con-

trol packet from another node with the destination sequence

number higher than what it has in its routing table, the node

selects the route via this other node. A malicious node adds

a positive value with the destination sequence number of an

RREP message, and this causes the recipient to select the route

through the malicious node. In the case of 4 adversaries the

PDR drops to 56%.

LieAdd RREQ reqid. Each RREQ message is uniquely

identified by the request identifier in conjunction with the orig-

inator’s IP. For each new route request, the request identifier is

incremented by one. No node ever responds to an older RREQ

message. A malicious node tricks the destination to respond

to an RREQ with a future request identifier so that the source

will be left with only one available route, i.e., through the

malicious node. We observe that this attack causes the PDR

to drop as low as 62% as the number of adversaries increases.

Lie RERR type and Lie RREP hops. Modifying the type of

an RERR to RREQ causes the recipient to discard the packet.

We find that adversaries can reduce the performance to 71%

by performing this attack. Similarly, when a malicious node

sets the hop count of an RREP to 0, the recipient selects the

route through the malicious node as the recipient thinks that

it can reach the destination by 1 (=0+1) hop. We observe that

this attack causes the PDR to drop up to 73%.

Blackhole/wormhole attacks. We first tested AODV-UU

against blackhole attackers (malicious nodes that drop all the

data packets). We then introduce an additional blackhole node

that colludes with the other blackhole node via a private

channel to perform a wormhole attack. The PDR drops to

50% with the increase in blackhole nodes, whereas the PDR

drops to 40% in case of the wormhole attack.

V. CASE STUDY 2: ARAN

We now describe how we used Turret-W to test the im-

plementation of ARAN presented in [50]. We summarize all

discovered attacks and bugs in Table IV.

A. Protocol Description

ARAN [10], [50] is a secure reactive wireless routing

protocol. ARAN introduces authentication, message integrity

and non-repudiation by utilizing digital signatures on mes-

sages. Each node receives a certificate from a trusted cer-

tification authority (CA). The protocol consists of a route

discovery process utilizing three types of routing messages:

route discovery (RDP), route reply (REP), and route error

(ERR). In essence, the route discovery process of ARAN

is similar to that of AODV. In addition, ARAN guarantees

end-to-end authentication. The routing messages are digitally

authenticated at every hop, which ensures that only authorized

nodes participate at each hop between the source and the

destination.

Implementation used: We rely on the implementation

arand-0.3.2 (referred below as ARAND), publicly available

from [14]. This user space routing daemon built for Linux

kernel 2.4 relies on the Ad hoc Support Library (ASL) [51]

that provides an interface to the kernel functionalities required

by any on-demand ad hoc routing protocol. ASL takes care of

adding/deleting routes in the kernel routing table and notifying

ARAND to initiate a route discovery for a destination in case

of an unavailable route. The ARAND daemon also utilizes the

functionality provided by the route_check kernel module

of ASL to delete stale routes. For the cryptographic function-

alities, it uses OpenSSL [52]. We use the default values for

parameters as used in [14].

B. Discovered Bug

Bug. Wrong postal address. We discovered an implemen-

tation bug during the benign experiments in the setting of

a multi-hop wireless network. By design, a route discovery

request should be flooded via broadcast and the response

should be delivered via unicast following the reverse path.

However, in the implementation, upon receiving a response,

an intermediate node attempts to forward the response directly

to the source node (i.e., the originator of the route discovery)

instead of the correct next hop node that is on the reverse

route to the source. If the intermediate node is more than

one hop away from the source node, this response message

cannot be delivered to the source, and thus, the route discovery

fails. We fix this bug by letting the intermediate node use the

correct next hop address to forward the route response. This

bug is due to an implementation mistake that exists inside

the aran_processREP() function defined in aran.c and

manifests in topologies having nodes that are at least 3 hops

away from each other.

C. Discovered Attacks

Attacks caused by message forwarding actions. We re-

discovered several attacks on ARAND based on malicious

delivery that have a significant impact on the performance. By

design, ARAN is known to be susceptible to these attacks [9],

[53]. We observe a 99% PDR when no attacks take place. We
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then measure the changes in the PDR achieved by ARAND

as a function of the number of adversaries. Due to space

limitations, we omit these graphs.

Divert REP, Drop ERR and Delay REP: By diverting a

route reply (REP) message and by dropping a route error

(ERR) message, a malicious node can cause the most damage

among these attacks. Both these messages are sent via unicast

by design, and therefore, if an intermediate malicious node

drops or diverts these messages, the upstream nodes on the

route remain unaware of the on-going attack. Diverting REP

messages disrupts the completion of route discovery whereas

dropping ERR messages keeps the source unaware of the

broken link and thus, prevents the source from re-initiating

a route discovery for the destination. Four malicious nodes

can drop the PDR to below 30% by diverting REP messages

and to 40% by dropping ERR messages. On the other hand,

delaying a REP message at an intermediate malicious node can

reduce the PDR, but the impact is less significant as compared

to diverting REP messages.

Drop RDP. An intermediate malicious node can drop a

route discovery (RDP) message instead of re-broadcasting.

This attack causes a slow decrease in PDR because every

intermediate node re-broadcasts the RDP packet and therefore,

even if a malicious node does not forward the RDP, the

destination eventually receives the RDP message from other

benign node(s).

Blackhole/wormhole attacks. We evaluate ARAND in the

presence of blackhole/wormhole attackers in the network. In

the presence of one blackhole attacker, the PDR drops to

80%. Adding another blackhole node drops the PDR to 42%.

However, when two blackhole nodes collude with each other

to perform a wormhole attack, the PDR drops to 28%.

VI. CASE STUDY 3: OLSR

We now describe how we used Turret-W to test OLSR [3].

All discovered attacks are shown in Table IV.

A. Protocol Description

OLSR [3] is a proactive routing protocol based on the tradi-

tional link-state algorithm where each node maintains topology

information about the network by periodically exchanging

link-state messages. OLSR minimizes the size of each control

message and the number of rebroadcasting nodes during each

route update by employing a multipoint relaying strategy.

During every topology update, each node in the network

selects a set of neighboring nodes, called multipoint relays,

to retransmit its packets. To select the multipoint relays, each

node periodically broadcasts a list of its one hop neighbors

using HELLO messages. From the list of nodes in the HELLO

messages, each node selects a subset of its one hop neighbors,

which cover all of its two hop neighbors. Each node, then,

disseminates information about the subset, i.e., the set of

multipoint relays, using topology control (TC) messages that

are retransmitted only by the multipoint relays of the node.

Other nodes receiving these TC messages process them but

do not retransmit. Each node eventually determines an optimal

route (e.g., with minimum hops) to every known destination

using the topology information and updates its routing table.

During data transmission, this routing table is leveraged to

determine route to a destination.

Implementation used: We use olsrd-0.6.3 (referred below as

OLSRD) publicly available from [13], which is RFC 3626 [60]

complaint. This implementation is a routing daemon that

employs the ioctl() system call to communicate with

the kernel and utilizes the NETLINK_ROUTE protocol to

manipulate the kernel routing table. Unlike the above reactive

protocols, it does not have any kernel module that intercepts

the network packets from the network subsystem. The daemon

communicates with other nodes over UDP and interacts with

the kernel only when necessary, e.g., to add/delete a route

to/from the kernel routing table, to enable IP forwarding, etc.

We use the default values for parameters as used in [61].

B. Discovered Attacks

Attacks caused by malicious actions. We rediscovered

several attacks in OLSRD based on message delivery and

lying actions that have a significant impact on the application

performance. By design, OLSR is known to be susceptible to

these attacks [54]–[56]. We observe a 100% PDR in a benign

scenario. We measure the impact of the attacks on PDR as a

function of the number of adversaries in the network. Due to

space limitations, we omit the graphs from this section.

Replay HELLO. When a node receives a HELLO message

from another node, it adds the node to its neighbor list and

starts broadcasting a new HELLO message. Based on the

HELLO messages, nodes learn about their one hop neigh-

borhood and select their multipoint relays that forward TC

messages. By replaying a HELLO received from a neighbor,

a malicious node can disrupt the routing service of its benign

neighbors that are not direct neighbors of the originator of the

HELLO. We observe the PDR to be around 80% on average,

regardless of the number of attackers in the network.

Drop TC 100%. A TC message traverses the entire network

via multipoint relays. TC messages are important because

a node considers all the received TC messages to infer the

network topology and thus, establishes a route to every other

node. Therefore, an attack on TC messages is more damaging

in that it will lead to inconsistencies in routing table of benign

nodes. We observe that dropping TC messages results in at

most 50% drop in PDR. Note that while selecting malicious

nodes randomly in our experiments, we do not add any

constraints on the selection procedure.

Lie Pkt Seq. By design, OLSR follows the heterogeneous

packet format where each packet is ordered by a sequence

number. Before sending out a packet, a malicious proxy

can replace the sequence number of the packet with a fake

value (e.g. 0). This malformed packet causes disruption in

route calculation. Four malicious nodes can drop the PDR of

OLSRD up to 69%.

Blackhole/wormhole attacks. We measured the PDR ob-

tained by OLSRD at the presence of three different config-

urations of blackhole and wormhole attackers: one blackhole

attacker, two independent blackhole attackers, a colluding pair

blackhole attackers connected through a private channel. With

the increase in blackhole nodes the PDR decreases as low

as 50%. The combination of the wormhole and blackhole

attackers makes the attack more significant as the PDR drops

to around 30%.
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TABLE IV
ATTACKS AND BUGS (RE-)DISCOVERED BY TURRET-W. ATTACKS/BUGS WITH (*) MEANS NEWLY DISCOVERED.

Protocol Impl. Discovery Type Name Description

AODV-UU

0.9.6 [12],

Reactive,

Updated:

Apr 13, 2011

Attack* Lie RREQ type 2 Lie about RREQ message type by setting to 2 (RREP) (causes crashing)

Attack [10] Lie RERR type 1 Lie about RERR message type by setting to 1 (RREQ)

Attack [8], [10] Lie RREP hop 0 Lie about the hop count in route response to be 0

Attack [10] LieAdd RREQ reqid 10 Increment the route request id of route request by 10

Attack [8], [10] LieAdd RREP destsq 10 Increment the destination sequence number of route response by 10

Attack [8], [10] Replay RREP Replay both route response and hello messages

Attack [8] Blackhole Drop all data packets

Attack [8], [10] Wormhole + Blackhole Colluding malicious nodes drop all data packets

Bug* Kernel interaction order Notifies the two components about the route discovery in a wrong order

Bug* Route packets harder Returning NF_ACCEPT from hooks causes Netfilter not to check iptables

ARAND

0.3.2 [14],

Reactive,

Updated:

Jan 31, 2003

Attack [53] Drop RDP 100% Drop each route request message

Attack [53] Delay REP 2s Delay forwarding of route response message by 2 seconds

Attack [53] Divert REP Divert route response message

Attack [53] Drop ERR 100% Drop route error message

Attack [9] Blackhole Drop all data packets

Attack [9] Wormhole + Blackhole Colluding malicious nodes drop all data packets

Bug* Wrong postal address Intermediate nodes forward REP to the source instead of the next hop

OLSRD

0.6.3 [13],

Proactive,

Updated:

Jun 5, 2011

Attack [54]–[56] Replay HELLO Replay a HELLO message received from a neighbor

Attack [54]–[56] Drop TC 100% Drop all topology control messages

Attack [54]–[56] Lie Pkt Seq 0 Lie about the sequence number in olsr pkt to be 0

Attack [54], [55] Blackhole Drop all data packets

Attack [54], [55] Wormhole + Blackhole Colluding malicious nodes drop all data packets

DSDV [15],

Proactive,

Updated:

Sep 24, 2011

Attack* Lie HELLO seq 255 Lie about own sequence in HELLO messages with 255 (cause crashing)

Attack* Lie HELLO dstseq 255 Lie about the dest. sequences in HELLO messages with 255 (cause crashing)

Attack* Lie HELLO hopcount 255 Lie about the hopcount in HELLO messages with 255 (cause crashing)

Attack* Lie HELLO dstseq 254 Lie about the dest. sequences in HELLO messages with 254 (cause crashing)

Attack [57] Replay HELLO Replay all HELLO messages received from neighbors

Attack [57] Drop HELLO 100% Drop all HELLO messages

Attack [57] Divert HELLO Divert own HELLO messages

Attack [58] LieAdd HELLO seq 10 Increment the own sequence number of HELLO messages by 10

Attack [58] LieAdd HELLO dstseq 10 Increment each destination sequence number in HELLO messages by 10

Attack [11], [57] Blackhole Drop all data packets

Attack [57] Wormhole + Blackhole Colluding malicious nodes drop all data packets

Batman-adv

2014.1.0 [16],

Proactive,

Updated:

Mar 13, 2014

Attack [7], [59] Replay OGM Replay an OGM message received from a neighbor

Attack [7] Lie OGM TQ 255 Lie about the transmit quality in OGM to be 255

Attack [7] Replay Unicast4Addr Replay an Unicast4Addr message received from a neighbor

Attack [7] Lie Unicast type 0 Lie about the type of an Unicast message to be 0

Attack [7] Lie Unicast4Addr type 0 Lie about the type of an Unicast4Addr message to be 0

Attack [59] Blackhole Drop all data packets

Attack [59] Wormhole + Blackhole Colluding malicious nodes drop all data packets

VII. CASE STUDY 4: DSDV

We now describe how we used Turret-W to test DSDV [2].

All discovered attacks are shown in Table IV.

A. Protocol Description

The DSDV (destination-sequenced distance-vector) routing

protocol is based on the Bellman-Ford family of algorithms

that utilize distance vectors to calculate paths, between any

two nodes in the network, along which data can be exchanged.

DSDV is a table-driven proactive routing protocol, and there-

fore, each node maintains a routing table consisting of entries

for every possible destination (not just the neighbors) along

with the cost to reach the destination. As a cost metric, the

protocol uses hop-count that is the number of hops a packet

has to travel to reach its destination.

Each node periodically advertises its own routing table to

its neighbors using HELLO messages. In addition, any changes

to the routing table are propagated to other nodes as quickly

as possible. These updates may lead to routing loops within

the network. To avoid routing loops, each routing update from

the node is tagged with a sequence number. Each node is free

to choose an even number as the starting sequence number for

the routing updates where the node is listed as the destination,

but the node increments the sequence number by 2 for each

periodic update. A sequence number defines the freshness

of the route to the destination. Note that one node cannot

change the sequence number tagged with such routing updates

made by others. However, in case of a broken/expired link

to one of its neighbor, the node can increment the sequence

number by 1 and trigger an update mechanism. The nodes

receiving this update check the sequence number and if it is an

odd number, they remove the corresponding entry from their

routing table. Moreover, DSDV uses settling time to dampen

the route fluctuations due to node mobility.

Implementation used: We use the DSDV implementation

presented in [37] that is developed as part of the Grid project,

which is built on the Click modular router [38], and is

publicly available from [15]. We call it DSDV-Click. This

implementation of DSDV can run either at the user-space

using the Click user-space process or the kernel-space using

the Click Linux kernel module. We chose the former due to its

nature of high portability and easy debugging. At user-space,

the Click process loads a network tunnel (tun) device, which

the process considers as a file descriptor (e.g., /dev/tun0)

and the operating system considers as a network interface

(e.g., tun0). The Click process exchanges packets with the

operating system’s network stack using this tunnel device. We

use the default values for parameters as used in [15].

B. Discovered Attacks

Attacks caused crashing. We discovered 4 implementation

dependent attacks in DSDV-Click that cause all the neighbors

of a malicious node to crash.

Lie HELLO seq or dstseq with odd values: We found that

there can be multiple sequence numbers in a HELLO message.

A node places its own sequence number (we refer to it as seq)
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as well as the sequence number of each destination (we refer

to it as dstseq) that it is aware of into its HELLO messages.

Whenever a node receives such a HELLO message, it checks

if each advertised route is active. If so, each of the received

sequence numbers must be an even number. Therefore, by

simply lying on one or more of these sequence numbers, i.e.,

by setting a positive odd number, a malicious node can cause

each of its neighbors to fail an assertion check and crash.

Lie HELLO hopcount with 255: While advertising routes to

other destinations, the originator node also includes hopcount

(i.e., the number of hops to reach each of them from the

originator) into its HELLO messages. We found an attack

where an adversary can exploit the integer overflow vulner-

ability associated with the hopcount field, which is one byte

in length. The adversary maliciously advertises routes with a

value of 255 as the hopcount. Whenever one of the adversary’s

neighbors receives such advertisements and decides to update

its routing table, the node adds 1 to the received hopcount.

This addition overflows the field causing the node itself to

crash due to an assertion failure.

Lie HELLO dstseq with even values: Turret-W helped us

discover another crashing attack that is very subtle and delicate

in terms of its execution. In this attack, the malicious node

always modifies the route advertisements with a positive even

number as the destination sequence number (dstseq), which

apparently looks correct according to the protocol. However,

a positive even number as dstseq is not correct for an advertise-

ment of an expired route. Therefore, whenever the malicious

node sends advertisements about the recently expired routes

with a positive even number as dstseq, an assertion check on

the neighbors causes them to crash.

Attacks caused by malicious actions. Like other protocols,

we also found several attacks in DSDV-Click that impair the

application performance. By design, DSDV [2] is known to

be susceptible to these attacks [11], [57], [58]. We measure

the changes in PDR achieved by the application as a function

of the number of adversaries in the network where each node

employs the DSDV-Click as the underlying routing protocol.

In the benign case, we observe a 100% PDR. Due to space

limitations, we omit the graphs.

LieAdd HELLO seq and LieAdd HELLO dstseq. Recall

that, in DSDV, each node maintains a routing table consisting

of entries for all possible destinations (not only neighbors)

and periodically advertises its routing table to its neighbors

using beacon messages (i.e., HELLO). Each of these messages

contains the sequence number (seq) of the node itself along

with zero or more entries for other destinations that the node is

aware of at that very moment. Each additional entry includes

the received sequence number (dstseq) of the corresponding

destination. A sequence number tagged with a route defines the

freshness of the route— a higher sequence number indicates

a more recent route. Therefore, whenever a node receives

a HELLO message from another node with the destination

sequence number higher than what it is aware of, the node

selects this new route. A malicious node can exploit this fact

and add a positive even number to the destination sequence

number contained in a HELLO message, and this causes the

receiving nodes to select the route through the malicious node.

Note that instead of a positive even number, if the adversary

chooses to add a positive odd number, the attack will cause the

neighbors to crash (as explained earlier) since DSDV expects

the sequence numbers defined by the originators to be positive

even numbers.

According to our experimental results, adding positive even

numbers to the dstseq field is more damaging than performing

the same attack on the seq field. We can attribute this to the fact

that by modifying the seq field the adversary just offers a more

recent route to itself whereas by modifying the dstseq fields

the adversary offers more recent (but not legitimate) routes

to other destinations containing itself on these paths. Our

experiment results show that the achieved PDR can drop from

62% to 20% with the increase in the number of adversaries

when the adversaries perform such attacks on the dstseq fields.

However, in case of such attacks on the seq field, we observe

the PDR to drop from 86% to 72%.

Drop HELLO and Divert HELLO. The DSDV protocol

requires nodes to exchange only HELLO messages as control

packets pertaining to the routing service to establish a routing

table. Therefore, when a malicious node drops all of its

own HELLO messages, no other nodes within the network

will ever be aware that the malicious node is active. As a

result, the source node selects a path longer than the shortest

one if the malicious node is on that shortest path. Similarly,

when a malicious node sends its own HELLO messages to

randomly selected nodes instead of broadcasting the messages,

only a few nodes will know about the existence of this

node. However, every node eventually learns the route to the

malicious node due to the route advertisement mechanism of

the DSDV protocol. The cost metric of these routes may not

be the real optimum value. Consequently, the source may end

up using a longer path than the original shorter one. In both

the cases, we observe the PDR drops roughly from 95% to

65% with the increase in the number of adversaries.

Replay HELLO. In this attack, an adversary re-broadcasts

the HELLO messages received from the neighboring nodes

without any modification. As a result, any two benign neigh-

bors of the adversary that are multiple hops away from each

other (in reality) consider themselves as 1-hop neighbors.

Moreover, these false links never expire as long as the attack

continues. In this case, we observe the PDR changes from

88% to 50% as the number of adversaries increases.

Blackhole/wormhole attacks. To test DSDV-Click in the

presence of blackhole/wormhole attacks, we followed the same

approach as for the other protocols. In case of one blackhole

attacker, we observe a PDR of 80% whereas the PDR drops

to 63% when we introduced another blackhole adversary. In

case of the wormhole attack, the PDR drops to 49%.

VIII. CASE STUDY 5: BATMAN

We now describe how we used Turret-W to test BAT-

MAN [7]. All discovered attacks are shown in Table IV.

A. Protocol Description

BATMAN is a proactive routing protocol for multi-hop

wireless adhoc networks. Unlike link-state protocols, it does

not determine the whole path to the destination, nor does it

requires the global view of the network topology to route

packets. Instead, it requires each node to maintain only the best
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next hop to every other node in the network using collective

intelligence, similar to a distance-vector protocol. Therefore,

information about any topological change in the network does

not need to be instantly spread throughout the network.

Each node periodically broadcasts an originator message

(OGM) to inform its existence to its neighbors. The neighbors

then rebroadcast the message to their neighbors and so on

and so forth. Therefore, every node is aware of the existence

of every other node in the network but records only the list

of direct neighbors that it has received such messages from.

The best next-hop to each destination is selected based on

a metric called Transmit Quality (TQ), which measures the

probability of a successful transmission of a packet on the

link between the node and the next-hop. As a result, each node

only knows who to handover the data (encapsulated in Unicast

messages) destined to a node that is multiple hops away. The

data is handed over to the best next-hop neighbor, which in

turn repeats the mechanism until reaches its destination.

BATMAN utilizes a distributed ARP table (DAT) to enable

nodes to perform faster ARP lookup operations. In essence,

DAT mechanism creates an ARP cache distributed across the

nodes by storing ARP entries as the ARP requests/responses

travel through the network. Unlike traditional ARP requests,

given an IPv4 address, a node can identify the group of

nodes that may contain the related ARP entry by utilizing

a distributed hash function. Instead of broadcasting, requests

are sent as unicast messages (Unicast4Addr). If there is no

response to the request, the requester node can fallback to the

traditional ARP mechanism and broadcast the ARP request.

Implementation used. We use Batman-adv-2014.1.0 (re-

ferred below as Batman-adv) implementation publicly avail-

able from [16]. This implementation is a kernel-space imple-

mentation running at the data link layer where both the routing

information and the data traffic are encapsulated and forwarded

as raw Ethernet frames. Hence, the network communication

does not depend on IP. The protocol emulates a virtual network

switch connecting all the nodes as if the nodes are link local,

and therefore unaware of the network topology.

B. Discovered Attacks

Attacks caused by malicious actions. We rediscovered

several attacks on Batman-adv based on message delivery

and lying actions that decrease the PDR below the accepted

threshold. By design, the BATMAN protocol is known to be

susceptible to these attacks [7], [59]. In case of our benign

experiments, we observe a 97% PDR. We then measure the

impact of the attacks on PDR as a function of the number of

adversaries in the network. Due to space limitations, we omit

the graphs from this section.

Reply OGM. By replaying the originator messages (OGMs)

received from a node, an adversary can induce its benign

neighbors to consider the originator as a direct neighbor since

OGMs are used to announce the existence of nodes in the

network. This disrupts the routing service substantially since

these replayed OGMs propagate through the network thereby

affecting the best next-hop selection at the nodes that are

closer to the attacker than to the originator. This attack is

more damaging than others since replaying OGMs causes

these pseudo-links never to expire. We observe that the PDR

decreases from 24% to 6% with increasing adversaries.

Lie OGM TQ. When sending an OGM, the originator

initializes the transmit quality (TQ) field with its maximum

value of 255. Prior to re-broadcasting an OGM, the forwarding

node sets the TQ field with a value that is the TQ of the

received OGM times its measured TQ towards the last hop

node via which it received the OGM. As a result, the TQ field

of an OGM indicates the probability of successful transmission

of a packet towards the originator along the path the OGM

has traversed. A malicious node exploits this fact by setting

the TQ field of all outgoing OGM to 255 thereby enticing the

neighbors to select itself as the best next-hop neighbor towards

the originator. Our experiment results show that the PDR drops

from 77% to 54% as the number of adversaries increases.

Replay Unicast4Addr. When the source has to retrieve the

MAC address of the destination, it computes the group of

nodes that may contain the related ARP entry and sends

Unicast4Addr messages. In this attack, an adversary replays all

the Unicast4Addr messages containing either ARP request or

response. Though this attack cannot directly disrupt the routing

table, it can overload the network with Unicast4Addr packets

when the number of adversaries increases in the network

because the adversaries collectively create a ripple effect by

replaying each received Unicast4Addr message. Moreover a

Unicast4Addr message is quite smaller in length compared to

a message carrying data traffic. As a result, this ripple effect

affects the forwarding of the data traffic through the network.

In our experiments, we observe the PDR drops from 77% to

47% as the number of adversaries increases.

Lie Unicast type and Lie Unicast4Addr type. The source

encapsulates the data traffic in Unicast messages and hands

over to the best next-hop neighbor and so does the next-hop

neighbor until the data reaches the destination. By lying on the

type field of a Unicast message, the adversary disrupts the data

forwarding as the modified Unicast message is not interpreted

as the data message. We observe the PDR drops from 70%

to 9% with the increase in the number of adversaries. On the

other hand, when the adversary modifies the type field of a

Unicast4Addr message, it can disrupt the ARP request for a

while. However, after a timeout, the requester falls back to

traditional ARP mechanism and broadcasts the ARP request,

which eventually reaches the destination or some intermediate

nodes that can reply with the related ARP entry. Therefore, in

case of this attack, we observe that the attack is only effective

when the number of adversaries in the network is larger than

2 causing the PDR to drop to 63%.

Blackhole/wormhole attacks. We test Batman-adv against

blackhole/wormhole attacks in the same way as we did for

other protocols. We observe that the PDR drops from 60% to

47% as the number of blackhole attacker increases from 1 to

2. When these two attackers collude to create a wormhole, the

PDR drops to 42%.

IX. RELATED WORK

Model checking techniques [62]–[64] have been used to

verify the correctness of protocol models. Once the model is

specified in a high-level modeling language, its correctness is

verified mathematically. Many works extended such methods

to consider the wireless environment [65]–[68].
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While model checking techniques have been helpful to show

the correctness of the model of a protocol, the high-level de-

scriptions abstract away many details of the actual implemen-

tation resulting in missing vulnerabilities in the abstract model,

which may manifest in the actual implementation. Exploration

based model checking techniques [69]–[72] apply model

checking directly on implementations. Specifically, CMC [70]

has been applied on different implementations of the AODV

protocol, but requires the implementations to be ported to its

specialized runtime environment.

Without denying the benefit of model checking, our work

is orthogonally different since we focus on bugs/attacks that

impair the performance of the protocol in actual executions

of the implementation. In addition, one can argue to establish

ground truth using model checking or using formally verified

reference implementation like [73]. However, note that being

able to model check liveness and performance properties is

a challenging problem, and to the best of our knowledge,

existing model checking techniques cannot check performance

properties. Also, to the best of our knowledge, there are no

verified reference implementations for the protocols we tested.

Systematic fault injection is another popular method to im-

prove software robustness [74], [75]. Unlike model checking

or symbolic execution, fault injection focuses on exceptional

behavior of software by injecting faults. However, such works

do not consider adversarial environments as ours where we

inject malicious faults that are tailored to imitate attackers.

Several network emulation tools have been developed, for

example, NIST Net [76] catering wired networks and Emu-

lab [34], Orbit [36] catering wireless networks. Such tools

designed for wireless networks could conceptually replace the

NS-3 network emulator and the virtualization-based nodes, but

would require the user to provide a separate (and malicious)

implementation of the routing protocol under test and that is

for each adversary in the network. Whereas, we do not require

any such malicious version of the protocol under test.

There have been some recent effort on finding attacks au-

tomatically in implementations [25], [27], [28], [40]. Kothari

et al. [27] automatically find attacks that manipulate control

flow by modifying messages using static analysis by relying on

a priori knowledge about vulnerability. Stanojevic et al. [40]

automatically search for gullibility in two-party protocols

by leveraging a variety of techniques: packet-dropping and

packet header modifications. Lee et al. [25] automatically

discover performance attacks caused by insiders in distributed

systems without requiring instrumented implementation. All

these works except [28] require the implementation to be

written in specific languages.

X. CONCLUSION

Given the importance of routing as a fundamental com-

ponent of wireless networks, it is critical to subject their

implementations to adversarial testing before deployment. To

aid developers in this task, we develop Turret-W, an adversarial

testing platform for wireless routing protocol implementations

with minimal physical resources. We demonstrate our system

by evaluating publicly available real world implementations of

AODV, ARAN, OLSR, DSDV, and BATMAN. In total, we (re-

)discovered 37 adversarial attacks capable of either crashing

the benign nodes or reducing their performance by disrupting

the routing service and 3 implementation bugs that impair the

protocol performance in benign environment.

ACKNOWLEDGMENTS

This material is based in part upon work supported by

the National Science Foundation under Grant Number CNS-

1223834. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] E. Hoque, H. Lee, R. Potharaju, C. Killian, and C. Nita-Rotaru, “Ad-
versarial testing of wireless routing implementations,” in WiSec, 2013.

[2] C. Perkins and P. Bhagwat, “Highly dynamic DSDV for mobile com-
puters,” ACM Sigcomm CCR, 1994.

[3] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in IEEE Mtc, 2001.

[4] C. E. Perkins and E. M. Royer, “Ad-hoc On-Demand Distance Vector
Routing,” in IEEE WMCSA, 1997.

[5] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless
networks,” Mobile computing, 1996.

[6] S. Radhakrishnan, G. Racherla, C. Sekharan, N. Rao, and S. Batsell,
“Dst-a routing protocol for ad hoc networks using distributed spanning
trees,” in IEEE WCNC, 1999.

[7] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better
Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.),” http://tools.
ietf.org/html/draft-wunderlich-openmesh-manet-routing-00.

[8] M. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in WiSE,
2002.

[9] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,” TISSEC, 2008.

[10] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer, “A
secure routing protocol for ad hoc networks,” in IEEE ICNP, 2002.

[11] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” WN, 2005.

[12] “AODV-UU,” http://sourceforge.net/projects/aodvuu.
[13] “OLSRD,” http://www.olsr.org.
[14] “ARAN,” http://prisms.cs.umass.edu/arand, accessed Nov 2012.
[15] “Click modular router,” http://www.read.cs.ucla.edu/click.
[16] “Batman-adv,” https://goo.gl/xersqM, accessed May 2014.
[17] F. De Renesse and A. Aghvami, “Formal verification of ad-hoc routing

protocols using spin model checker,” in IEEE Melecon, 2004.
[18] “Network Simulator 2.” http://www.isi.edu/nsnam/ns/.
[19] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for parallel

simulation of large wireless networks,” Sigsim, 1998.
[20] S. Woo and S. Singh, “Scalable routing protocol for ad hoc networks,”

Wireless Networks, vol. 7, no. 5, 2001.
[21] A. Gupta, I. Wormsbecker, and C. Wilhainson, “Experimental evaluation

of TCP performance in multi-hop wireless ad hoc networks,” in Mascots,
2004.

[22] G. Anastasi, E. Ancillotti, M. Conti, and A. Passarella, “Experimental
analysis of a transport protocol for ad hoc networks (TPA),” in MSWiM,
2006.

[23] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C. Ma-
sone, S. McGrath, and Y. Yuan, “Outdoor experimental comparison of
four ad hoc routing algorithms,” in MSWiM, 2004.

[24] S. M. ElRakabawy and C. Lindemann, “A practical adaptive pacing
scheme for TCP in multihop wireless networks,” ToN, 2011.

[25] H. Lee, J. Seibert, C. Killian, and C. Nita-Rotaru, “Gatling: Automatic
attack discovery in large-scale distributed systems,” in NDSS, 2012.

[26] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahdat, “Mace:
language support for building distributed systems,” ACM SIGPLAN

Notices, vol. 42, no. 6, 2007.
[27] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,

“Finding protocol manipulation attacks,” ACM Sigcomm CCR, 2011.
[28] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru, “Turret:

A Platform for Automated Attack Finding in Unmodified Distributed
System Implementations,” in ICDCS, 2014.

[29] I. Habib, “Virtualization with kvm,” Linux Journal, 2008.
[30] “Network Simulator 3,” http://www.nsnam.org.



14

[31] G. G. Finn, “Routing and addressing problems in large metropolitan-
scale internetworks,” DTIC Document, Tech. Rep., 1987.

[32] B. Karp and H.-T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in MobiCom, 2000.

[33] M. Bahr, “Update on the hybrid wireless mesh protocol of IEEE
802.11s,” in MASS, 2007.

[34] “Emulab - network emulation testbed,” http://www.emulab.net/.
[35] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat, “Mobinet: a

scalable emulation infrastructure for ad hoc and wireless networks,”
Sigmobile CCR, 2006.

[36] “Orbit,” http://www.orbit-lab.org.
[37] B. A. Chambers, “The grid roofnet: a rooftop ad hoc wireless network,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2002.
[38] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

click modular router,” ACM TOCS, vol. 18, no. 3, 2000.
[39] “Grid project,” http://pdos.csail.mit.edu/grid/.
[40] M. Stanojevic, R. Mahajan, T. Millstein, and M. Musuvathi, “Can

you fool me? towards automatically checking protocol gullibility,” in
HotNets, 2008.

[41] S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging state information for
automated attack discovery in transport protocol implementations,” in
DSN, 2015.

[42] P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for
multi-channel multi-interface ad hoc wireless networks,” ACM SIGMO-

BILE MC2R, 2006.
[43] Y. Peng, Y. Yu, L. Guo, D. Jiang, and Q. Gai, “An efficient joint channel

assignment and qos routing protocol for ieee 802.11 multi-radio multi-
channel wireless mesh networks,” JNCA, 2013.

[44] “Iperf,” http://sourceforge.net/projects/iperf.
[45] S. Paris, C. Nita-Rotaru, F. Martignon, and A. Capone, “Efw: A cross-

layer metric for reliable routing in wireless mesh networks with selfish
participants,” in Infocom, 2011.

[46] A. Alvarez, R. Orea, S. Cabrero, X. G. Pañeda, R. Garcı́a, and
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