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Abstract—Cryptographic standards like the PKCS#1-v1.5 sig-
nature scheme for RSA are essential for secure digital communi-
cations, yet cryptographic libraries remain vulnerable. Fuzzing,
a security testing technique, often struggles to detect memory-
safety bugs in these libraries due to the need for context-sensitive
inputs—those with complex semantic relationships between their
fields. This paper presents a preliminary study that evaluates
7 fuzzers for their ability to generate such inputs across 5
libraries implementing the PKCS#1-v1.5 signature verification
scheme. Our evaluation highlights the limitations of fuzzers with
context-sensitive inputs. Black-box fuzzers supporting semantic
constraints like ISLA (100% valid inputs) and Morpheus (57 %)
outperform grey-box fuzzers such as Nautilus (37%), AFL++
(31%) and AFL (29%), which struggle with code coverage focus.

Index Terms—Fuzzing, Cryptographic protocols, PKCS#1-v1.5

I. INTRODUCTION

Cryptographic protocols are essential to ensuring secu-
rity, yet many libraries implementing these protocols remain
vulnerable [1H4]. Fuzzing—a widely used security testing
technique—has uncovered numerous flaws [3]]. However, ro-
bust, general-purpose fuzzers like AFL and its variants [S} 6]
still struggle to detect vulnerabilities in cryptographic libraries
[IH3]. This limitation applies notably to the PKCS#1-v1.5
signature verification scheme [7]], a fundamental cryptographic
primitive used to verify RSA digital signatures in protocols
like TLS and IPSec, which secure digital communications.

Recent research [1, 2] has shown that customized tools
specifically designed to find signature forgery vulnerabilities
in PKCS#1-v1.5 libraries unexpectedly uncovered numerous
memory-safety bugs (e.g., buffer overflows) that were missed
by AFL [8], despite its strong track record in detecting such
issues. This finding motivated us to ask a broader question:
Whether other general-purpose fuzzers—varying in approach
from black-box to grey-box and using techniques like input
grammars or seed inputs—could perform any better in identi-
fying these bugs.

Further inspection reveals that the major challenge in trig-
gering these bugs lies in crafting test inputs that not only
contain specific “jackpor” values but also pass the strict input
validations typical of cryptographic protocols [7, 9]. These
validations involve complex sanity checks at early stages in the
code, allowing only correctly formatted inputs to proceed to
deeper layers. Protocol standards dictate these semantic input
validation requirements, which are often context-sensitive, re-
flecting intricate relationships between various fields within the
input. Consequently, an incorrectly formatted input that fails

to meet these semantic requirements will likely be discarded
before it reaches the buggy code.

This indicates that a fuzzer capable of generating semanti-
cally well-formatted inputs would be more effective in uncov-
ering such bugs. To evaluate the suitability of state-of-the-art
general-purpose fuzzers for testing PKCS#1-v1.5 libraries, our
study focuses on assessing their ability to produce context-
sensitive fuzzed inputs—those that are semantically well-
formatted but include values mutated by the fuzzer.

In this paper, we present a preliminary study evaluating
the ability of 7 modern fuzzers to generate context-sensitive
fuzzed inputs for 5 libraries implementing the PKCS#1-v1.5
signature verification scheme. These fuzzers employ a range
of approaches, from grey-box and black-box methods to tech-
niques like seed inputs and input grammars. While previous
research has used coverage-based metrics, such as branch
coverage, to assess fuzzers [5, [10H13], we use the validity
rate of context-sensitive fuzzed inputs as our primary metric.
Unlike branch coverage, which relies on source code access
or instrumentation and is thus unsuitable for black-box fuzzers
and closed-source libraries, the validity rate offers a source-
independent metric for assessing a fuzzer’s ability to meet
PKCS#1-v1.5 semantic requirements.

Our evaluation shows that black-box fuzzers supporting
semantic constraints (e.g., Morpheus [2], ISLA [14]) out-
perform grey-box fuzzers (e.g., AFL++ [15]], Nautilus [16]]),
which often get sidetracked by their focus on code cov-
erage. However, AFL in deterministic mode can surpass
context-free grammar-based fuzzers (e.g., Peach [17]) by
selectively mutating non-essential parts of context-sensitive
inputs. Similar challenges in handling PKCS#1-v1.5 inputs
likely apply to protocols like TCP and DNS, highlight-
ing the need for further research. Our tool is available at
https://github.com/syne-lab/fuzz-eval.

II. PRELIMINARIES

This section briefly covers fuzzing basics and PKCS#1-v1.5
standard for RSA signature generation and verification.
Fuzzing. Fuzzing is a powerful software testing method that
feeds abnormal inputs to programs, exposing crashes and vul-
nerabilities [6]]. Fuzzers come in three main types: white-box,
grey-box, and black-box. White-box fuzzers (e.g., SAGE [18])
use detailed program knowledge through symbolic execution
to analyze path constraints. Grey-box fuzzers, like AFL and
AFL++, rely on partial insights such as code coverage metrics.
In contrast, black-box fuzzers (e.g., Peach, Morpheus) lack



internal program knowledge. Fuzzers use different input gen-
eration methods, from random mutations [8} [15] to grammar-
based techniques [14} 16, |17, [19] that leverage input structure
and relationships for more targeted testing.

PKCS#1-v1.5 for RSA Signatures. PKCS#1-v1.5 [7], a
cryptographic standard, plays a pivotal role in secure com-
munication protocols such as SSL/TLS and IPSec as well as
in software signing and X.509 certificates. It defines formats
for RSA encryption and signature schemes, including padding
schemes. To generate a signature for a message, M, using RSA
algorithm and PKCS#1-v1.5 padding scheme, the message M
is first encoded to produce an EM structure as follows:

EM = 0x00 || BT || PS || 0x00 | PL

Here, BT represents the block type (0x01 for signatures,
0x02 for encryption), PS denotes a padding string (byte
sequence containing OxFF) for RSA signatures, and PL repre-
sents the payload bytes, i.e., a hash digest of M. The signature,
S, is generated using the operation S = EM? mod n, where d
is the RSA private exponent and n is the public modulus.

To ensure the generation of valid EM structures, it is crucial
to maintain |EM| = |n|, where |n| denotes the size of the public
modulus in bytes. Additional constraints on the EM structure
include the minimum length of the padding string (|PS| > 8)
and the relationship between PS and PL (|PS| = |n|—|PL| —3).
In our study, we assess fuzzers’ effectiveness in generating var-
ious EM structures that satisfy these PKCS#1-v1.5 constraints.

III. DESIGN AND IMPLEMENTATION
A. Design

We developed CSFuzz, a unified platform to evaluate
fuzzers’ ability to generate context-sensitive inputs. CSFuzz
standardizes testing conditions across different fuzzing cam-
paigns through customizable settings and consists of three
main components: the Controller, Validator, and Oracle. The
controller manages fuzzing campaigns, while the validator
receives the fuzzer-generated inputs to verify them using the
oracle based on the PKCS#1-v1.5 standard and records results.

a) Controller: The Controller uses a configuration file to set
up campaign details, such as the fuzzer and library, fuzzing
duration and seed. After parsing the configuration, it launches
the validator server, starts the (fuzzer, library) campaign, mon-
itors progress, and shuts down the campaign upon completion.
The controller also supports concurrent campaigns.

b) Validator: The validator, a locally hosted TCP server,
receives fuzzer-generated inputs from test harnesses. Its main
role is to validate these inputs by consulting the oracle. For
each input, the validator queries the oracle and logs the
response.

c¢) Oracle: The oracle checks if a fuzzer-generated input
satisfies PKCS#1-v1.5 constraints. Although the payload (PL)
contains a cryptographic hash of the message, the oracle treats
it simply as a byte sequence without checking the validity
of the hash digest. Our focus here is to confirm that each
generated input (EM) satisfies these constraints: (a) [EM| = |n|,
(b) |PS| > 8, and (c) [PS| = |n| — |PL| — 3 (see § [II).
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Fig. 1. Workflow of CSFuzz

Fuzzer, Test Harness, and Test Subject. Instead of directly
fuzzing the test subject (i.e., a PKCS#1-v1.5 library), we
configure the fuzzer to target a test harness that uses the library
for RSA signature verification. The fuzzer supplies the harness
with a byte array (i.e., an EM structure) to generate an RSA
signature. Inspired by [1, 2], key RSA components (public
modulus, public exponent, and private exponent) are kept
constant across all tests. After signature generation, the harness
invokes the library’s signature verification function. Once the
function returns, the harness forwards the EM structure to
CSFuzz’s validator to check PKCS#1-v1.5 compliance. This
process repeats with each new EM from the fuzzer.
Workflow. Fig. [I] depicts CSFuzz’s operation. In summary,
the controller takes in the fuzz campaign configuration (@),
launches the validator server (@), initiates the (fuzzer, library)
fuzzing campaign (@), where the fuzzer provides inputs to the
test harness (@). The test harness processes each input, invokes
the signature verification function (@), and sends the input to
the validator (@). The validator then consults the oracle to
validate the input (@) and logs the response (@).

B. Implementation

CSFuzz is primarily implemented in Python3. The con-
troller, written in Python3, processes a TOML configuration
file. For TCP functionality, the validator and controller utilize
the Twisted library in Python3. The critical oracle component
is a Python3 function. However, we developed test harnesses
for each PKCS#1-v1.5 library in C/C++. For reproducibility,
we employed a Docker-container-based virtualized environ-
ment, dedicating each container to a single fuzzing campaign.

IV. EVALUATION

We evaluate the effectiveness of fuzzers in generating
context-sensitive mutated inputs for PKCS#1-v1.5 signature
verification libraries. Inputs satisfying PKCS#1-v1.5 semantic
constraints are deemed valid by our oracle. Effectiveness
is measured as the percentage of valid inputs each fuzzer
produces over time—higher is better. Metrics like code cov-
erage and bug detection are left for future work, but fuzzer
throughput (valid/invalid inputs per second) is reported in [20].

A. Experimental Setup

Fuzzers. Our objective was to evaluate a wide range of
fuzzers, from black-box to grey-box approaches, utilizing
various techniques such as input grammars or seed inputs, and
differing in their need for access to source code. We assessed



7 fuzzers: AFL [8|], AFL++ [15]], AFLSmart [19], Nautilus
[16]], Peach [17], Morpheus [2], and ISLA [14].

AFL, AFL++, AFLSmart, and Nautilus are grey-box
fuzzers. While AFL, AFL++, and AFLSmart benefit from valid
seed inputs, Nautilus requires the input grammar Peach and
ISLA require input format specifications, with Peach operating
as a black-box fuzzer and ISLA functioning as an input
generator for any black-box fuzzer. Morpheus, another black-
box fuzzer, is specifically designed for testing PKCS#1-v1.5
implementations, embedding these specifications internally.
PKCS#1-v1.5 Libraries. We tested the fuzzers on 5 widely
used libraries implementing PKCS#1-v1.5 signature verifi-
cation, all developed in C/C++ and downloaded from their
respective public repository. Instead of fuzzing each library
directly, we fuzzed a test harness that uses the library for
RSA signature verification. The harness takes a PKCS#1-v1.5
formatted byte array (an EM structure, see § , generates an
RSA signature using the EM, a predefined private key (n,d),
and a message (e.g., "hello world!"), and then verifies the
RSA signature via the library. The harness then sends the
original EM structure to CSFuzz’s validator to check its validity,
not the signature or the library’s cryptographic output.
Computing Setup. Each fuzzer was tested for 10 hours
on each library across five repetitions, totaling about 1800
computing hours. Tests were conducted on a third-party cloud
server, with each campaign running in a dedicated Ubuntu
20.04 Docker container with 8GB RAM and 3 cores. To keep
costs under $500 USD, we limited testing to 10 hours, based
on cloud provider estimates for computation and storage.

B. Results

Table [[] presents the percentage of valid inputs generated by
each fuzzer for each library. Each percentage is the average
from five repetitions of each fuzzing campaign. Note that ISLA
and Morpheus results are not included in this table.

ISLA is distinctive in consistently generating 100% valid
inputs. This is achieved by using the EM structure’s context-
sensitive grammar along with an SMT solver [21] to resolve
EM’s constraints during input generation, resulting in a flawless
output of valid inputs across all PKCS#1-v1.5 libraries.

Morpheus follows ISLA as the next most effective fuzzer,
producing 56.69% valid inputs for all libraries. Operating
based on PKCS#1-v1.5 specifications, Morpheus generates a
fixed set of inputs through predefined mutations, regardless
of the library under test. Consequently, it yields fewer valid
inputs than ISLA.

Peach, a black-box fuzzer, proves to be the least effective,
generating only 17.81% valid inputs on average. Although it
relies on input specifications, Peach only supports a context-
free grammar of the EM structure, limiting its performance
since it lacks awareness of EM’s necessary constraints.

Among grey-box fuzzers, Nautilus generates the most valid
inputs overall (36.71%), while AFL and AFL++ produce

IWe used AFL (v2.57b) and AFL++ (v4.07¢) from their GitHub reposito-
ries. We ran AFL++ using its default configuration without enabling advanced
features like custom mutators or grammar support.

TABLE I
THE PERCENTAGE OF VALID INPUTS GENERATED BY THE FUZZERS
(EXCLUDING MORPHEUS AND ISLA) ACROSS PKCS#1-V1.5 LIBRARIES.
A HIGHER VALUE INDICATES GREATER EFFECTIVENESS.

Libraries AFL | AFL++ | AFLSmart | Nautilus | Peach
axtls 24.58 25.70 0.58 18.94 17.54
hostapd 27.36 33.41 3.69 42.58 17.86
libtomcrypt 34.07 38.43 6.88 41.69 17.87
matrixssl 28.88 25.13 0.84 26.66 17.90
wpasupplicant | 29.18 31.59 3.62 53.70 17.89
Average 28.81 30.85 3.12 36.71 17.81
28.81% and 30.85% valid inputs, respectively. Nautilus’s

higher performance is attributed to its additional requirement
for a context-free grammar of EM, giving it an advantage over
the other two fuzzers.

AFLSmart, despite requiring input specifications, is less
effective than other AFL-based fuzzers. For instance, while
Nautilus generated 18.94% valid inputs for axtls, AFLSmart
produced only 0.58% for the same target. This disparity is
due to AFLSmart’s heavy reliance on havoc-based mutations,
which significantly alter even valid seed inputs.

Overall, we observed that black-box fuzzers or input genera-
tors that rely on input specifications with semantic constraints,
such as Morpheus and ISLA, generally outperform grey-box
fuzzers. In contrast, grey-box fuzzers tend to be derailed by
their focus on increasing code coverage, even when they start
with strong seed inputs (AFL++), context-free input grammars
(Nautilus), or both (AFLSmart).

V. TAKEAWAYS

Customized vs. General-purpose Tools. Although cus-
tomized tools like Morpheus are generally expected to excel,
general-purpose tools like ISLA can outperform Morpheus due
to their support for context-sensitive constraints and use of an
SMT solver. However, ISLA’s advantage comes with a trade-
off: slower input generation.

Context-free Input Grammars. Fuzzers relying on context-
free input specifications, like Nautilus, AFLSmart, and Peach,
struggle to satisfy context-sensitive constraints, leading to
numerous invalid inputs.

Deterministic Fuzzing Mode. AFL-like grey-box fuzzers in
deterministic mode, given valid seed inputs, can outperform
grammar-based fuzzers like Peach by selectively mutating
non-essential parts of the EM structure (e.g., the payload (PL),
which is irrelevant to our oracle). This approach helps them
discover new paths while preserving valid inputs. In contrast,
disabling deterministic mode, as in AFLSmart, often disrupts
the input structure and increases invalid inputs.

Influence of Test-subjects’ Code. Coverage-guided grey-box
fuzzers, regardless of reliance on input specifications, are
influenced by each test subject’s code. The rate of valid input
generation varies with both the test subject and time.

Threat to Validity. Testing 7 fuzzers across 5 libraries for 10
hours may limit insights into their full potential for generating
valid inputs, affecting generalizability.



VI. RELATED WORK

Fuzzer Evaluation. LAVA [22] introduces synthetic bugs for
testing, though these may differ from real-world vulnerabilities
[10, [11]]. Evil Coder [23]] uses data flow analysis to insert
bugs, while other benchmarks like CGC binaries [24], Magma
[25]], UniFuzz [26] and Fuzzbench [27] incorporate real-world
vulnerabilities. Similarly, our study assesses fuzzers on cryp-
tographic libraries implementing the PKCS#1-v1.5 signature
scheme, aligning with real-world applications. Although our
selected 5 libraries may not form a comprehensive benchmark,
we acknowledge the ongoing challenge of creating one.
Unlike prior studies [5, [L0H13] that prioritize metrics like
code or branch coverage and known-bug counts, our work
uniquely compares fuzzers based on their effectiveness in
generating inputs that meet complex semantic constraints.
Traditional coverage and bug metrics can be unreliable [28]]
as they may overlook a fuzzer’s depth in exploring program
states. For instance, a fuzzer for XML might find parsing
bugs but miss core logic issues. By focusing on semantically
valid inputs, our study emphasizes a fuzzer’s capacity to reach
deeper program states.
Evaluation of PKCS#1-v1.5. Automated tools have uncov-
ered signature forgery vulnerabilities [29] in several libraries
using symbolic execution [1]] and domain-specific fuzzers [2].
In contrast, our study focuses on inputs that trigger memory-
safety bugs protected by initial validation [2} |4], which must
satisfy context-sensitive semantic constraints. We examined
fuzzers’ ability to generate such inputs for PKCS#1-v1.5.

VII. CONCLUSION AND FUTURE WORK

Our study of 7 popular fuzzers reveals their effectiveness in
generating context-sensitive inputs for testing PKCS#1-v1.5.
The findings highlight performance differences and the chal-
lenges fuzzers face with context-sensitive inputs. In the future,
we will conduct a large-scale evaluation to assess fuzzers on
additional performance metrics, such as code coverage and
bug detection, while generating context-sensitive inputs.
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